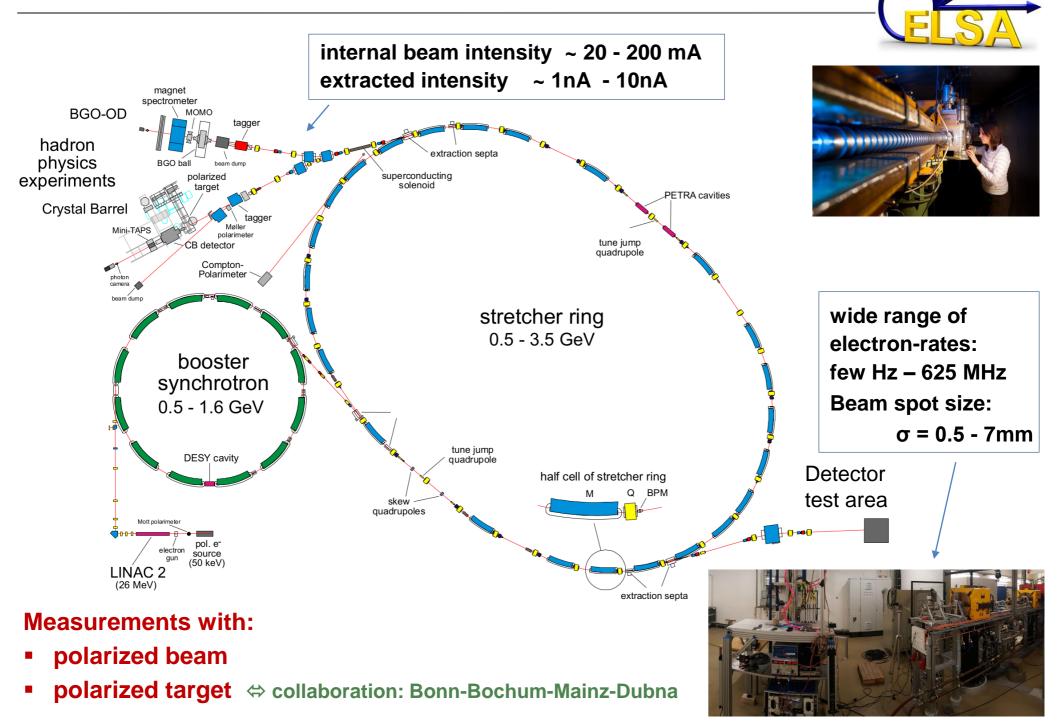

Physics at ELSA – Status and Perspectives

KHuK Jahrestagung 8-10 December 2022 Physikzentrum Bad Honnef

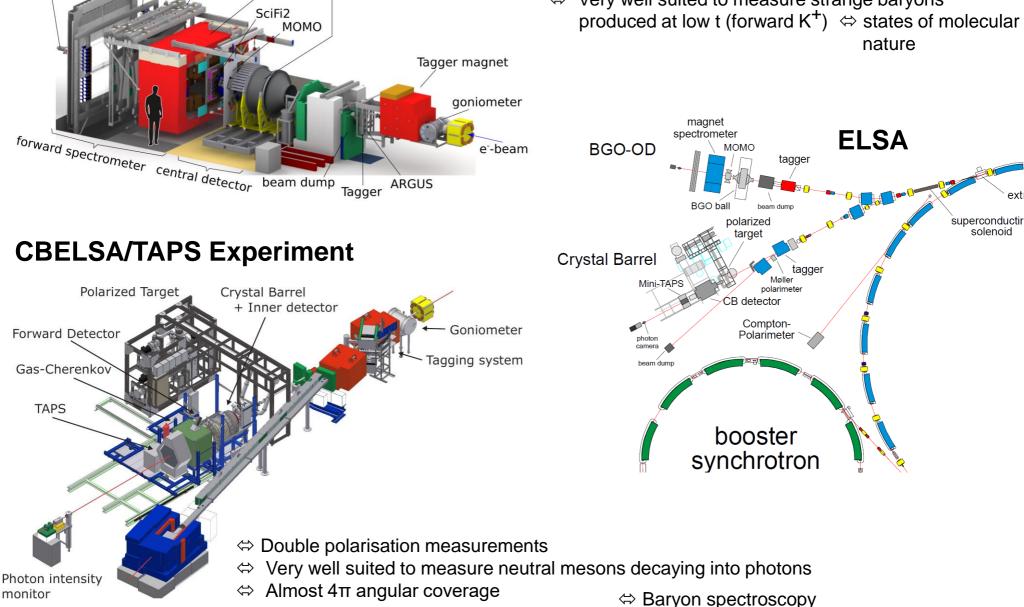
- ELSA
- Selected Results
- Status and Perspectives


U.Thoma, Bonn

The Electron Accelerator ELSA

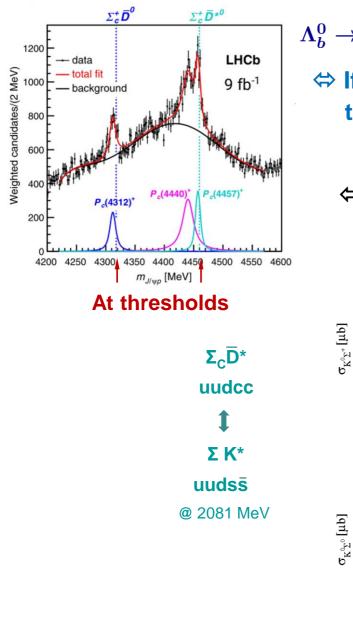
Hadron Physics at ELSA

driftchambers


BGO ball

BGOOD Experiment

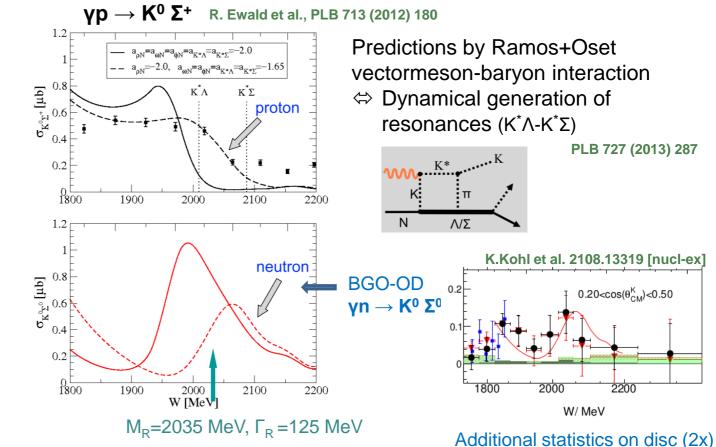
flux monitoring


ToF

⇔ Open dipole setup combined with BGO calorimeter
 ⇔ Very well suited to measure strange baryons

Open **D**ipole magnet

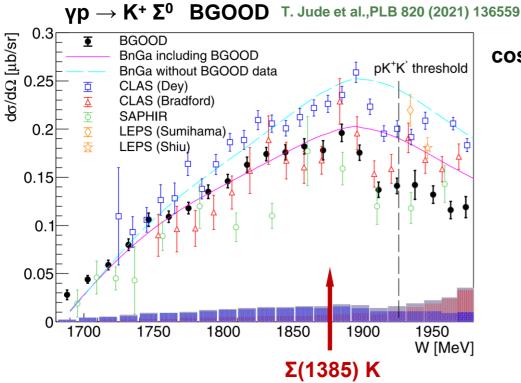
BGOOD - Experiment

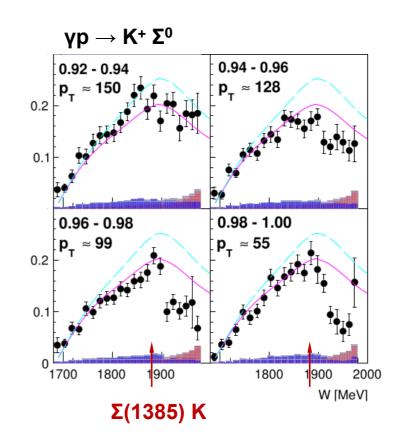


$$\Lambda_b^0 o J/\Psi p K^-$$

If multi-quark states exist in the charm-sector shouldn't they also occur in the strange-sector?

prominent example: $\Lambda^*(1405)$

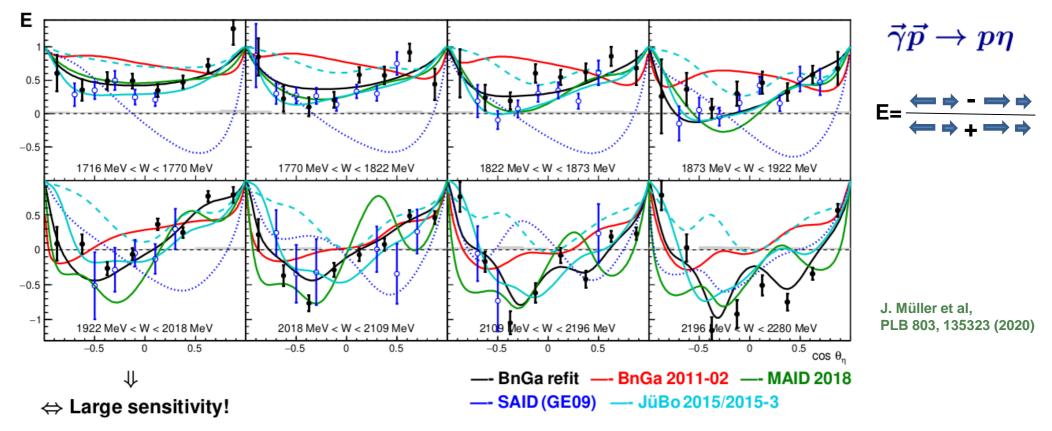

⇔ Threshold structures in the strange sector?



BGOOD - Experiment

cos(Θ)_K > 0.9

- Good understanding of the data needed
- ⇔ Contributing amplitudes?
- ⇔ Properties? / Quantum numbers?


Forward angles indicate "low momentum exchange" production \Leftrightarrow molecular structures?

Aim: Understanding of the spectrum and properties of baryon resonances – bound states of strong QCD

(Double) polarization experiments as key to resolve the baryon spectrum

circ. pol. photons, long. pol. target, CBELSA/TAPS high energy bins, blue: CLAS

 \Rightarrow Determination of precise pŋ-branching ratios

- BnGa-PWA / JüBo dynamical coupled channel approach

Results – Properties of Baryon Resonances

Results including new data on $E,~G,~T,~P,~H,~\Sigma,~\sigma$

Data allowed a new determination of $p\eta$ -branching ratios for many resonances, e.g.: J.Müller et al. (CBELSA/TAPS), PLB 803, 135323 (2020)

	$N(1535)1/2^-$	$N(1650)1/2^-$	$N(1710)1/2^+$	$N(1895)1/2^-$
BnGa	0.41±0.04	0.33±0.04	0.18±0.10	0.10±0.05
PDG'2012	0.42±0.10	0.05 - 0.15	0.10 - 0.30	no PDG estimate

⇔ Additional constraints from new (polarization) data fix PWA-solutions much better than before

Large and heavily discussed difference in the $p\eta$ -branching ratio of N(1535)1/2⁻ and N(1650)1/2⁻ now significantly reduced

New (double) polarization data was also included in JüBo:

 ηN residue of N(1650)1/2⁻ increased by almost a factor of 2!

Clearly shows the power of polarisation experiments

Multi-channel Bonn-Gatchina PWA:

 \Rightarrow Confirmation known resonances, better determination of their properties

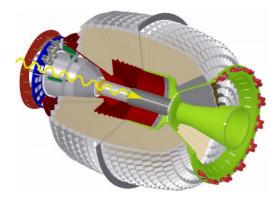
 \Rightarrow New resonances observed

	RPP 2010	our analyses	RPP'22 (2018-22)
N(1710)1/2+	***	*** <mark>*</mark>	*** <mark>*</mark>
N(1860)5/2+		*	**
N(1875)3/2-		***	***
N(1880)1/2+		***	***
N(1895)1/2 ⁻		****	****
N(1900)3/2+	**	****	*** <mark>*</mark>
N(2060)5/2-		***	***
N(2100)1/2+	*	***	***
N(2120)3/2-		***	***
∆ (1600)3/2 +	***	***	*** <mark>*</mark>
$\Delta(1900)1/2^{-}$	*	***	***
∆ (1940)3/2 ⁻	*	**	**
∆ (2200)7/2 [−]	*	***	***

from 2000-2010 <u>not one</u> new baryon resonance was considered by the PDG

↔ Results from photoproduction do now enter the PDG and determine the properties of baryon resonances!

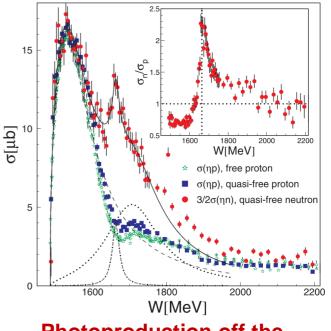
(before: almost entirely πN -scattering and some π -photoproduction)


Photoproduction provides access

- to the "inelastic channels"
- ⇒ better determination of resonance properties

Recent CB-Calorimeter Upgrade

APDs and Sampling ADC-readout

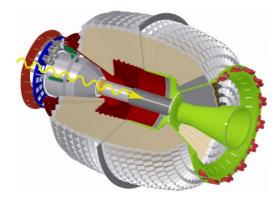

⇔ Trigger / time

=> Opens a new window into the spectrum of light baryons:

- Photoprod. off the neutron ! (Isospin dependence)
- ⇔ Higher data taking rates (factor ~7)
 - => Multi-particle final states
 - ⇔ Larger statistics larger sensitivity

η-photoproduction

I. Jaegle et al, EPJA 47 (2012) 89

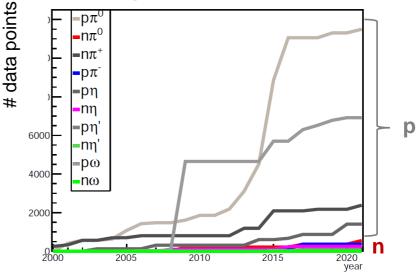

Photoproduction off the neutron ≠ off the proton

Resonances may decouple from the proton and couple to the neutron

Polarized photoproduction of neutral mesons off the polarized nucleon (n)
 Neutral multi-meson photoproduction

Recent CB-Calorimeter Upgrade

APDs and Sampling ADC-readout


⇔ Trigger / time

=> Opens a new window into the spectrum of light baryons:

- Photoprod. off the neutron ! (Isospin dependence)
- ⇔ Higher data taking rates (factor ~7)
 - ⇒ Multi-particle final states
 ⇔ Larger statistics larger sensitivity

A. Thiel, F. Afzal, Y. Wunderlich, PPNP 125 (2022) 103949

Existing polarization data

Measurement of polarization observables important but: Very scarce !

First double polarisation data off the n taken - T, P, H - presently analyzed

Polarized photoproduction of neutral mesons off the polarized nucleon (n)
 Neutral multi-meson photoproduction

Future: Hadron Spectroscopy Perspectives @ ELSA

ELSA – mid-term perspectives (2023 – 2025): ~ 2000 beam hours/year

- **BGOOD**: Photoproduction of K⁺Λ^{*}(1405), γn → K⁰ Σ⁰, ... → multi-quark structures
- CBELSA/TAPS: Photoproduction off the neutron + Multi-meson photoproduction
 ⇔ polarization measurements

ELSA – long-term perspectives after shutdown (Brandschutz) (2026 -)

 Extending the physics reach from non-strange (N*, Δ*) to strange baryon spectroscopy (Λ*, Σ*) with polarized target

PDG'2018:

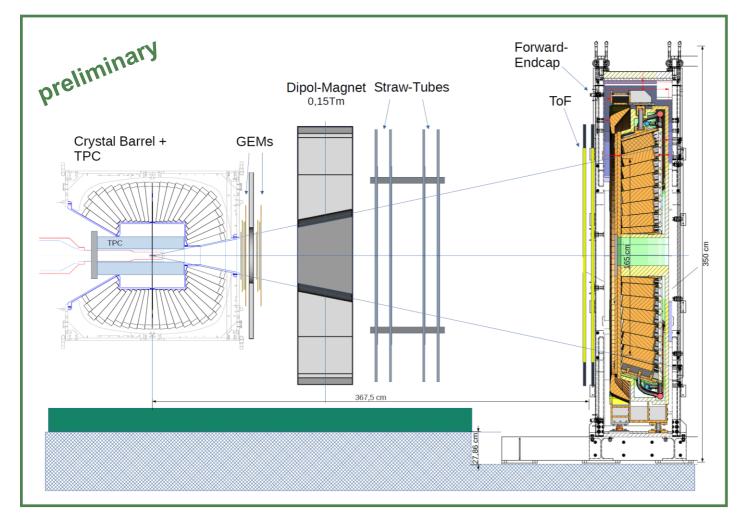
Since our last edition, there have been a few measurements of properties of the lowest Λ and Σ resonances - mostly of masses and widths. But the field remains at a standstill.

PDG'2020/2022:

For several decades, there has been very little new experimental data bearing on the properties of Λ and Σ resonances. An exception was the study at JLab of the reactions $\gamma p \rightarrow K^+ \Sigma^{\pm} \pi^{\mp}$ and $\gamma p \rightarrow K^+ \Sigma^0 \pi^0$ [1], which established the spin and parity of the Λ (1405) [2]. There was also from BNL new data on the very low energy region of K⁻p scattering [3–7]. **Otherwise, the field is starved for data**

⇔ not even all states of the first excitation band known

- spectrum and properties $\Lambda^*,\,\Sigma^*$


⇔ Upgrade of the detector system

Future: Hadron Spectroscopy Perspectives @ ELSA

ELSA

Upgrade of the detector system

~ 4π not only for photons but also for charged particles + <u>polarised target</u>

.... where PANDA might meet Crystal Barrel

in a win-win "early science" -situation

(one of the discussed options for PANDA early science)

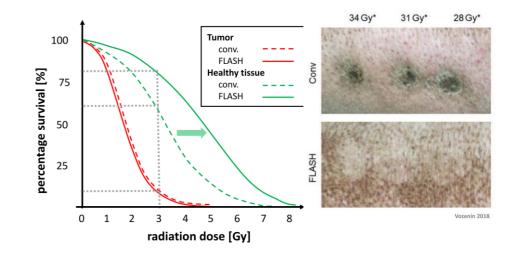
Polarized photoproduction off proton and neutron in the non-strange and strange baryon sector

- spectrum / properties of baryons, search for multi-quark states

Future: Additional Perspectives @ ELSA

- ELSA = a key facility related to the new "Research and Technology Center for Detector Physics (FTD)"
- ELSA: accelerator consolidation and accelerator research (e.g. study of a PWA injector)
- LOHENGRIN proposal (inspired by LDMX/SLAC)
 ⇔ search for light dark matter via dark bremsstrahlung
- Interdiscipliary research: FLASH@ELSA

ELSA ⇔ Cancer


- therapeutic FLASH irradiation using ultra-high energy electrons
- ⇔ search for better methods to spare healthy tissus and better tumor control
- high E electrons => deep seated tumors
- aim: up to 60 Gy per pulse, dose rates >> 60 Gy/s
 ⇔ faster regeneration of healthy tissue

Development of new ELSA operation modes!

- Simulations (beam model, beam focussing) / prepare beamline
- Measurement of relative biological effectivity

open for external users through EU-funded transnational access (STRONG-2020)

