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NEW PHYSICS
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Many indications for physics beyond the SM (BSM), aka “New Physics”
Astrophysical observations: baryon asymmetry, dark matter, dark energy, …
Lab searches for New Physics proceed along 3 frontiers:                                                    
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Theory prediction

Anomalous magnetic moment in the SM
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Fermilab 2021: 4.2𝜎 discrepancy between SM 
prediction and experimental value 

Factor of 2 reduction of experimental 
uncertainty expected

1-loop	QED	[1	diagram]

2-loop	QED	[7	diagrams]

3-loop	QED	[72	diagrams]

4-loop	QED	[891	diagrams]

5-loop	QED	[12	672	diagrams]	
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Schwinger	term

	aμ = α /2π

Theory prediction

Anomalous magnetic moment in the SM
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1 State of the art and preliminary work

The applicants of this Research Unit (RU) have been playing most visible roles in all of the
above-mentioned research directions, either by carrying out precision experiments at various
facilities worldwide (A2@MAMI, BABAR, BESIII, KLOE-2, WASA-at-COSY, ATLAS@LHC), by
providing theoretical support for these experiments, or by directly calculating the quantities of
interest as for example the hadronic LbL contribution to (g � 2)µ. For these calculations both
ab-initio methods such as lattice quantum chromodynamics (lattice QCD) or phenomenological
approaches are used. In the following we discuss in more detail the current state of research
and our contributions to the above-mentioned topics.

The current status of the anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is
displayed in Fig. 2 [5]. The discrepancy between the averaged experimental result and the
recommended value of the “Muon g-2 Theory Initiative” [9] amounts to 4.2 standard deviations.
The FNAL g�2 experiment will base its final result on a data set with a factor 20 higher statistics
compared to the initial publication [5]. This will yield an improvement in accuracy compared to
the BNL measurement [6] by a factor of four.

Figure 2: Status of the anomalous magnetic moment of the muon after the recent FNAL measure-
ment [5]. A deviation between the experimental average and the SM value with a significance of 4.2
standard deviations is observed. The SM value is taken from the “Muon g-2 Theory Initiative” White
Paper [9]. Figure taken from [5].

The SM prediction [9], a
SM
µ = 116 591 810(43) ⇥ 10�11, receives contributions from quantum

electrodynamics (QED), weak, and strong interactions, where the QED contribution is by far the
dominating one. Due to the non-perturbative nature of strong interactions, the current precision
of a

SM
µ is however entirely dominated by hadronic effects, which are subdivided into the hadronic

vacuum polarization (HVP), as well as the hadronic light-by-light (HLbL) contributions (Fig. 3) 1

a
HVP, LO
µ + a

HVP, NLO
µ + a

HVP, NNLO
µ = 6845(40) ⇥ 10�11

, (1)

a
HLbL
µ + a

HLbL, NLO
µ = 92(18) ⇥ 10�11

. (2)

1Please note that within the "Muon g-2 Theory Initiative," when combining the HVP estimates of [17] and [18],
the uncertainty of HVP has increased compared to the individual estimates due to unresolved inconsistencies. In
the evaluation of [18] the uncertainties of HVP and HLbL were found to be of similar size .
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Mismatch implies “New Physics” or 
insufficient understanding of the SM!

Abi, et al., Phys. Rev. Lett. 126 (2021) 14, 141801

Aoyama, et al., Phys. Rept. 887 (2020) 1-166
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WP update to-be-published early 2023

• Deadline (end of 11/2022) for publications 
to be considered for WP update
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Plenary workshop at the Helmholtz Institute Mainz (2018)

Lattice QCD: Mainz (Meyer, von Hippel, 
Wittig, …) , Regensburg (Lehner, …), 
Wuppertal (BMW)

Data-driven dispersive approach: Bonn 
(Kubis, …), Mainz (Danilkin, Denig, 
Pascalutsa, Redmer, Vanderhaeghen, FH, 
…)

Dyson-Schwinger approach: Gießen 
(Fischer, …)

Electroweak corrections: Dresden 
(Stöckinger, Stöckinger-Kim, …)
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Achim Denig Mainz gamma-gamma programme for HLbL
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a𝝁  × 1014 𝜹a𝝁  × 1014 𝜹a𝝁 /a𝝁

Experiment 116 592 061 000 41 000 4×10-7

SM 116 591 810 000 43 000 4×10-7

QED 116 584 718 931 104 9×10-10

HVP 6 845 000 40 000 6×10-3

Electroweak 153 600 1 000 7×10-3

HLbL 92 000 18 000 2×10-1

Hadronic	vacuum	
polarization	
(HVP)

E Pion transition form factors F⇡(n)�⇤�⇤ 62
E.1 Large-Nc Regge model 62
E.2 Comparison of data and literature: F⇡(n)�⇤�⇤ 64

F ⌘ and ⌘0 transition form factors F⌘(0)(n)�⇤�⇤ 66
F.1 Large-Nc Regge model 66
F.2 Comparison of data and literature: F⌘(n)�⇤�⇤ 67
F.3 Comparison of data and literature: F⌘0(n)�⇤�⇤ 70

(a) (b)

Figure 1: Hadronic contributions to (g�2)µ: (a) HVP, (b) HLbL. The pink blobs symbolize
hadronic intermediate states.

1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,
aµ = (g�2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

a
exp
µ = 116 592 089(63)⇥ 10�11

, (1.1)

by around 3.5�. In the near future, the new Fermilab E989 experiment [2] will be able to
reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]
will provide an important cross check, see ref. [4] for a comparison of the experimental
methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such
as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see fig-
ure 1 (b). Since the HVP contribution can be systematically calculated with a data-driven
dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently
by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-
structure constant ↵(t) in elastic electron–muon scattering, the HLbL contribution may end
up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-
tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,
as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5�

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant
from Cs interferometry [24] emerged [25, 26].
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.

4

Prospects for precise predictions of aµ in the SM
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a
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11

WP20

WP20 data-driven
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not used in WP20

BMW17

BDJ19

RBC/UKQCD
data/lattice

PACS19
RBC/UKQCD18

FHM19
Mainz/CLS19
ETM18/19
BMW20
LM20

not yet in WP

Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.

4

HLbL: data-driven and lattice QCD predictions are 
consistent ⟹ 10% uncertainty feasible (by 2025)

HVP: 2.1𝜎 disagreement between lattice QCD 
prediction from BMW Coll. and average of data-driven 
calculations

THEORY STATUS
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Window quantities disentangle statistical and systematic uncertainties

Lattice QCD can compute intermediate window with high precision

⟹ 3.7𝜎 tension with the data-driven evaluation

Isospin-breaking corrections are important for uncertainty

Hartmut	Wittig

Isospin	breaking

9

Sizeable	contribu6on	to	error	budget

(Slides	from	Vera	Gülpers)

IB corrections to HVP

Isospin Breaking Corrections

I lattice calculation aiming at 1% precision requires to include isospin breaking

æ Inclusion of IB corrections important to reach sub-percent precision

I first lattice calculations of IB corrections to the HVP since 2 ≠ 3 years

æ “Agreement not bad given that these are first generation calculations”

æ[L. Lellouch Thu 17:05]

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]

aµ �aµ

light

650.2

strange

53.2

14.6
13.7
7.2

light

strange
charm
disconnected

Isospin Breaking

1

11.6

0.30.1 2.9

3.4

light

strange
charm

disconnected

Isospin
Breaking

1I “More, more precise . . . IB calculations needed” [T. Blum Mon 15:10]

Vera Gülpers (University of Edinburgh) HVP from LQCD - workshop 20 Nov 2020 1 / 3

IB corrections to HVP

Overview of published results - contributions to aµ ◊ 1010

BMW ≠1.27(40)(33)
RBC/UKQCD 5.9(5.7)(1.7)
ETM 1.1(1.0)

BMW≠0.0095(86)(99) 0.42(20)(19)

BMW≠0.55(15)(11)
RBC/UKQCD≠6.9(2.1)(2.0)

BMW≠0.047(33)(23)0.011(24)(14)

BMW6.59(63)(53)
RBC/UKQCD10.6(4.3)(6.8)

ETM6.0(2.3)
FHM7.7(3.7) 9.0(2.3)

LM9.0(0.8)(1.2)

BMW≠4.63(54)(69)

BMW [arXiv:2002.12347]

RBC/UKQCD [Phys.Rev.Lett. 121 (2018) 2, 022003]

ETM [Phys. Rev. D 99, 114502 (2019)]

FHM [Phys.Rev.Lett. 120 (2018) 15, 152001]

LM [Phys.Rev.D 101 (2020) 074515]

Vera Gülpers (University of Edinburgh) HVP from LQCD - workshop 20 Nov 2020 2 / 3

Overview	of	published	results:

“Agreement	not	bad	given	that	these	are	first	
generaUon	calculaUons”	 [L.	Lellouch]

“More,	more	precise	.	.	.	IB	calculaUons	needed”	
[T.	Blum]

Discussion session: HVP windows

The RBC/UKQCD22 result in context

Colangelo et al. 2022/Lat
RBC/UKQCD 2022

ETMC 2022
Mainz 2022

ChiQCD 2022 OV/HISQ
ChiQCD 2022 OV/DWF

Aubin et al. 2022
ETMC 2021

LM 2020
BMW 2020 v1

Aubin et al. 2019
RBC/UKQCD 2018

195 200 205 210 215
aµ, ud, conn, isospin, W-0.4-1.0-0.15 × 1010

� 3.9� tension of RBC/UKQCD22 with Colangelo et al.
22/Lattice

� More on RBC/UKQCD18 on next slide

17 / 24

! Christoph Lehner’s talk

3

Introduction Lattice vs data-driven Spacelike Conclusions Lattice Data-driven 2⇡

The BMW result Borsanyi et al. Nature 2021

Weight functions for window quantities
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weighting functions for space- and time-like regions:

HVP
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PROTON CHARGE RADIUS
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Vladimir Pascalutsa — Mainz Laborotory Highlights — KPHTH —  Aug 12,  2019               

Various extractions
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Three ways to the proton radius
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Pohl et al., Nature 466, 213 (2010)
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Pohl et al., Science 353, 669 (2016)
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Franziska	Hagelstein		

Emmy-Noether	Interview	

18.11.2020

Back-up	Slides

Timeliness	vs.	Timeline

About	Me	&	My	Group

Executive	Summary

Research	Program

Host	Institution
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!H	2010

!H	2013

H(2S-4P)	

Garching	2017

H(2S-2P)	

Toronto	2019

CODATA	2018

CODATA	2014

H(1S-3S)	

Paris	2018

H,	pre	2016

e-p	scatt	

pre	2014

e-p	scatt,	PRad	2019

Muons Old	value

Muonic atoms allow for PRECISE 
extractions of nuclear charge and 
Zemach radii

CODATA since 2018 included the μH 
result for 

Still open issues: H(2S-8D) and 
H(1S-3S)

Precise and accurate!

rp
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FROM PUZZLE TO PRECISION

9

Several experimental activities ongoing and proposed: 

- 1S hyperfine splitting in H (ppm accuracy) and He 

- Improved measurement of Lamb shift in H, D and He  possible ( )

- Medium- and high-Z muonic atoms

‣ Theory Initiative is needed!

μ μ

μ μ μ + × 5
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First brainstorming meeting October 2022

Initials objectives:

Accurate theory predictions for light muonic 
atoms to test fundamental interactions by 
comparing to electronic atoms

Community consensus on SM predictions

Emphasis on the hyperfine splitting in H

Steering committee: Aldo Antognini, Carl Carlson, FH, Paul Indelicato, Krzysztof Pachucki, 
Vladimir Pascalutsa (Mainz) 

Kick-off meeting (PREN 2023): 26.06.2023 - 30.06.2023 @ JGU, Mainz

μ

Satellite Workshop to PSI2022 conference 
(14. and 15.10.2022)

A S
T I

from PUZZLE

to PRECISION

Muonic Atom Spectroscopy  
Theory Initiative

A S
T I

from PUZZLE

to PRECISION

Muonic Atom Spectroscopy  
Theory Initiative
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LAMB SHIFT IN MUONIC ATOMS

	

	

	

	

EXPERIMENT		

�ETPE ± �theo (�ETPE) Ref. �exp(�LS) Ref.

µH 33 µeV ± 2 µeV Antognini et al. (2013) 2.3 µeV Antognini et al. (2013)

µD 1710 µeV ± 15 µeV Krauth et al. (2015) 3.4 µeV Pohl et al. (2016)

µ3
He

+
15.30 meV ± 0.52 meV Franke et al. (2017) 0.05 meV

µ4
He

+
9.34 meV ± 0.25 meV Diepold et al. (2018) 0.05 meV Krauth et al. (2020)

�0.15 meV ± 0.15 meV (3PE) Pachucki et al. (2018)

THEORY

(70) 2PE  (elastic 25, nuclear inelastic 36, nucleon inelastic 56)
(42) 3PE  (inelastic contribution missing)
  (4) QED

r↵ = 1.67824(2)sys(13)stat(82)theory fm

(25) 2PE  (mainly subtraction term)
(15) QED

basically only nuclear 2PErd = 2.12562(5)sys(12)stat(77)theory fm

rp = 0.84087(12)sys(23)stat(29)theory fm

present accuracy factor 5-10 worse than experimental precision    

present accuracy comparable with experimental precision    μH:	

μD,	μ3He+,	μ4He+:			

(Bacca, Gorchtein, FH, Lensky, Vanderhaeghen, Pascalutsa, …) (Pohl, Wauters, …)
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COMBINING  𝜇H, H, He, HD+, …
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A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389-418

Proton structure
GE(Q2), GM(Q2)

F1(x,Q2), F2(x,Q2)
g1(x,Q2), g2(x,Q2)

Isotope shift
H – D(1S-2S)

rp

rp

rd

R∞

R∞

R∞

me/Mp

me/Mp

Mp/Md

Mp/M12C5+
Best test of

bound g-factors

Best test of
H-energy levels

Best test of a
three-body
molecule

Best test of 
higher-order
terms     Z5...7  

H(1S-3S)
δ = 1 × 10–12

He+(1S-2S)
δ = 6 × 10–12

Bound-electron g-factor
δ = 4 × 10–11

Theory tests

HD+

δ(rot) = 5 × 10–11

δ(rot–vib) = 2 × 10–11

rd(δ = 8 × 10–5)

μH (2S-2P)
δ = 1 × 10–5

rp(δ = 4 × 10–4)

H (1S-2S)
δ = 4 × 10–15

R∞(δ = 8 × 10–13)

Penning trap
programs

me, Mp, Md in atomic units

me/Mp (δ = 2 × 10–11)

HD+

δ(rot) = 1 × 10–11

δ(rot–vib) = 3 × 10–12

Figure 9
Simpli!ed scheme showing the impact of rp(µH) on improving fundamental constants and bound-state QED tests. Abbreviation: µH,
muonic hydrogen.

the rp value from CODATA 2018 does not completely re"ect the potential of the µH(2S-2P)
measurements. We thus sketch in the following the impact of rp(µH) by combining it with some
selected measurements and corresponding theory predictions in simple systems with distinctive
precision and sensitivity.Figure 9 illustrates the impact of theµH spectroscopy and its connection
to H,HD+, and Penning trap measurements that leads to cutting-edge tests of bound-state QED
for H-like systems, simple molecular systems, and bound-electron g-factors while improving
on fundamental constants such as the rp, rd, R∞, me, and Mp. Throughout this section we use
SI units.

5.1. Muonic Hydrogen to Hydrogen: Testing the Hydrogen Energy Levels
and Extracting R∞

Even though the recent H(2S-8D) measurement (15) is at some tension with the µH results, here
we exploit the agreement between the rp values from H (16, 17, 19) and µH to illustrate the
potential of combining µH and H measurements for testing the H energy levels and improving
on R∞, the most precisely known fundamental constant and a major player in the adjustment of
fundamental constants. R∞ also sets the energy scale for atoms, ions, and molecules, such that
precise predictions of transition frequencies in these systems require its precise value.

410 Antognini • Hagelstein • Pascalutsa
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HYPERFINE SPLITTING
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Experiment: HFS in H, He , …μ μ +Theory: QED, ChPT, data-driven 
dispersion relations, 


ab-initio few-nucleon theories

Spectroscopy of 
ordinary atoms (H, He )+

Guiding the exp. 

find narrow 1S HFS 
transitions


with the help of full 
theory predictions: 
QED, weak, finite 
size, polarizability

Input for data-
driven evaluations 

form factors, 
structure functions, 

polarizabilities

Electron and 
Compton Scattering

Determine  
fundamental 

constants 

Zemach radius RZ

Testing the theory 

‣ discriminate between theory 
predictions for polarizability 
effect


• disentangle  & 
polarizability effect by 
combining HFS in H & H


‣ test HFS theory

• combining HFS in H & H 

with theory prediction for 
polarizability effect


‣ test nuclear theories

RZ

μ

μ

Interpreting the exp. 

extract ,  or ETPE Epol. RZ



KHuK 2022          Franziska Hagelstein          9th December 2022 14

Thank you for your attention!


