QCD matter in extreme conditions

Gergely Endrődi

University of Bielefeld

KHuK Annual Meeting Bad Honnef, December 9, 2022

Introduction

▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

- ▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e
- neutron stars $T \lesssim 1$ keV, $n \lesssim 2$ fm⁻³ magnetars $B \lesssim 10^{15}$ G

Lattimer, Nature Astronomy 2019

- ▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e
- neutron stars $T \lesssim 1$ keV, $n \lesssim 2$ fm⁻³
 magnetars $B \lesssim 10^{15}$ G
- neutron star mergers $T \lesssim 50$ MeV

- ▶ heavy ion collisions $T \lesssim 10^{12}$ °C = 200 MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e
- neutron stars $T \lesssim 1$ keV, $n \lesssim 2$ fm⁻³ magnetars $B \lesssim 10^{15}$ G
- neutron star mergers $T \lesssim 50$ MeV
- ► eary universe, QCD epoch T ≤ 200 MeV standard scenario: n ≈ 0

Major experimental and observational campaigns

Major experimental and observational campaigns

Major experimental and observational campaigns

QCD phase diagram(s)

► control parameters: $T, n \leftrightarrow \mu, B$ $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

► control parameters: T, $n \leftrightarrow \mu$, B $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: $T, n \leftrightarrow \mu, B$ $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: *T*, *n* \leftrightarrow μ , *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: T, $n \leftrightarrow \mu$, B $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: T, $n \leftrightarrow \mu$, B $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: $T, n \leftrightarrow \mu, B$ $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: *T*, *n* \leftrightarrow μ , *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: *T*, *n* \leftrightarrow μ , *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: T, $n \leftrightarrow \mu$, B $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

► control parameters: T, $n \leftrightarrow \mu$, B $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

well-known famous phase diagram

Methods to study QCD thermodynamics

Lattice simulations

Euclidean QCD path integral over gauge field A

$$\mathcal{Z} = \int \mathcal{D}\mathcal{A} \, e^{-\mathcal{S}_{g}[\mathcal{A}]} \, \mathsf{det}[
ot\!\!\!/ [\mathcal{A}] + m]$$

▶ Monte-Carlo simulations need: det $[
otin + m] \in \mathbb{R}^+$

need
$$\Gamma$$
 : $\Gamma \not \! D \Gamma^{\dagger} = \not \! D^{\dagger}, \quad \Gamma^{\dagger} \Gamma = 1$

continuum limit to recover full theory

►
$$\nexists \Gamma \times \text{complex action (sign) problem}$$

 μ_B, E

Functional renormalization group

renormalization group flow from UV to IR

 P Kadanoff '66
 P Wilson '71

for QCD: from quarks and gluons to hadrons and nuclei

via successive integration of high-momentum modes Wetterich equation \mathscr{P} Wetterich '92

- \blacktriangleright exact flow equation, access to complete phase diagram \checkmark
- requires approximations (truncations, Ansätze) to solve ×

Thermodynamics at $\mu_B = 0$

• chiral limit: expect $1_{N_f=3}^{\text{st}}$ and $1_{N_f=2}^{\text{st}}/2_{N_f=2}^{\text{nd}}$ depending on $U_A(1)$ restoration \mathscr{P} Pisarski, Wilczek '84

transition at physical quark masses is a crossover

- chiral limit: expect $1_{N_f=3}^{st}$ and $1_{N_f=2}^{st}/2_{N_f=2}^{nd}$ depending on $U_A(1)$ restoration \mathscr{P} Pisarski, Wilczek '84
- ► lattice exploiting tricritical scaling in N_f : $2_{N_f=2,3}^{nd}$ \checkmark Cuteri, Philipsen, Sciarra '21

FRG including 't Hooft coupling $2_{N_f=2}^{nd}$? Braun et al. '20

► scaling of pseudocritical temperature gives: $T_c(m_{ud} = 0, m_s^{\text{phys}}) = 132^{+3}_{-6} \text{ MeV } ? \text{Ding et al. '19}$ compare ? Kotov et al. '21 ? Borsányi et al. '20 ? Aarts et al. '20

 $N_f = 3$: $T_c(m_{ud} = m_s = 0) = 98^{+3}_{-6}$ MeV ? Dini et al. '21

 scaling of pseudocritical temperature gives: T_c(m_{ud} = 0, m_s^{phys}) = 132⁺³₋₆ MeV @ Ding et al. '19 compare @ Kotov et al. '21 @ Borsányi et al. '20 @ Aarts et al. '20 N_f = 3: T_c(m_{ud} = m_s = 0) = 98⁺³₋₆ MeV @ Dini et al. '21

direct comparison between FRG and lattice

Thermodynamics at $\mu_B > 0$

Phase diagram in the $T - \mu_B$ plane

- analytical continuation of lattice results at iµ_B > 0 consistency with Taylor expansion PBorsányi et al. '20
- functional methods prefer critical endpoint
- FRG: *P* Fu, Pawlowski, Rennecke '20 *P* Gao, Pawlowski '20
 Otto, Busch, Schaefer '22
 DSE: including meson backcoupling effects *P* Gunkel, Fischer '21

Phase diagram in the $T - \mu_B$ plane

- ► analytical continuation of lattice results at iµ_B > 0 consistency with Taylor expansion Porsányi et al. '20
- functional methods prefer critical endpoint
- FRG: *P* Fu, Pawlowski, Rennecke '20 *P* Gao, Pawlowski '20
 Otto, Busch, Schaefer '22
 DSE: including meson backcoupling effects *P* Gunkel, Fischer '21

inhomogeneous instability at large μ_B?

Equation of state

• combining Taylor expansion in μ_B and shift in T

 $\mathcal{O}(T,\mu_B)\approx\mathcal{O}(T-\kappa\mu_B^2,0)$

primary observable: baryon density

Borsányi et al. '21

at zero strangeness density, relevant for HIC & Borsányi et al. '22

Further results

- alternative resummation schemes & Mondal et al. '21
- imaginary chemical potentials and Roberge-Weiss phase transitions & Brandt et al. '22
- QCD transition in the heavy quark/quenched limit
 P Borsányi et al. '22
- thermal effects on hadrons, chiral-spin symmetry & Aarts et al. '20 & Glozman, Philipsen, Pisarski '22
- transport properties photon emissivity 2 Cé et al. '22
- heavy quark diffusion & Brambilla et al. '22 & Altenkort et al. '22

Thermodynamics at $\mu_I > 0$

Phase diagram in the $T - \mu_I$ plane

$$\blacktriangleright \mu_I = \mu_u - \mu_d$$

phases: hadronic, quark-gluon plasma, BEC of charged pions

Brandt, Endrődi, Schmalzbauer '17
Brandt, Endrődi '19

Equation of state on the lattice

primary observable: isospin density

$$n_{I} = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_{I}}, \qquad p(T, \mu_{I}) - p(T, 0) = \int_{0}^{\mu_{I}} d\mu'_{I} n_{I}(\mu'_{I})$$

• results at $T \approx 0$

Brandt, Endrődi, Fraga, Hippert, Schaffner-Bielich, Schmalzbauer '18
 Brandt, Cuteri, Endrődi '22

Equation of state on the lattice

results at T ≠ 0 Ø Brandt, Cuteri, Endrődi '22
 Ø Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

- interaction measure peak shifts to lower T as μ_I grows
- ▶ speed of sound above $1/\sqrt{3}$ at high μ_I and intermediate T

EoS gets very stiff inside pion condensation phase

Speed of sound

- 'supersonic' region of pion condensate
- ▶ first time that $c_s > 1/\sqrt{3}$ found in a first-principles lattice QCD calculation

Speed of sound

- 'supersonic' region of pion condensate
- ▶ first time that $c_s > 1/\sqrt{3}$ found in a first-principles lattice QCD calculation
- ▶ relevance of c_s for neutron star modeling P Annala et al. '19

Speed of sound

- 'supersonic' region of pion condensate
- ▶ first time that $c_s > 1/\sqrt{3}$ found in a first-principles lattice QCD calculation
- ▶ relevance of c_s for neutron star modeling P Annala et al. '19
- c_s at μ_B > 0 from FRG and χEFT

 β Braun, Schallmo '22
 β Leonhardt et al. '20

Cosmological implications

early Universe

conservation equations for isentropic expansion

$$\frac{n_B}{s} = b, \quad \frac{n_Q}{s} = 0, \quad \frac{n_{L_{\alpha}}}{s} = l_{\alpha} \quad (\alpha \in \{e, \mu, \tau\})$$

large parameters: T, μ_B , μ_Q , $\mu_{L_{lpha}}$

experimental constraints & Planck coll. '15 & Oldengott, Schwarz '17

$$b = (8.60 \pm 0.06) \cdot 10^{-11}, \qquad |l_e + l_\mu + l_\tau| < 0.012$$

(the individual I_{α} may have opposite signs)

• $n_Q = 0$ with $l_e > 0$ allows equilibrium of e^- , ν_e , π^+

• cosmic trajectory $T(\mu_Q)$ is solved for

• standard scenario $(I_{\alpha} = 0)$: $\mu_Q = 0$ for all T

Z Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

• cosmic trajectory $T(\mu_Q)$ is solved for

• standard scenario $(I_{\alpha} = 0)$: $\mu_Q = 0$ for all T

Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

condition for pion condensation to occur:

$$|I_e + I_\mu + I_\tau| < 0.012$$

$$|\mathit{I_e}+\mathit{I_\mu}|\gtrsim 0.1$$

• cosmic trajectory $T(\mu_Q)$ is solved for

• standard scenario $(I_{\alpha} = 0)$: $\mu_Q = 0$ for all T

Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

condition for pion condensation to occur:

$$|I_e + I_\mu + I_\tau| < 0.012$$

$$|\mathit{I_e}+\mathit{I_\mu}|\gtrsim 0.1$$

enhanced primordial grav. waves (SKA)

Thermodynamics at B > 0

Phase diagram and critical point

▶ physical m_{π} , staggered quarks, continuum limit

🖉 Bali, Bruckmann, Endrődi, Fodor, Katz et al. '11 🖉 '12 🖉 Endrődi '15

Phase diagram and critical point

- physical m_π, staggered quarks, continuum limit

 P Bali, Bruckmann, Endrödi, Fodor, Katz et al. '11
 P '12
 P Endrödi '15

Phase diagram and critical point

- physical m_π, staggered quarks, continuum limit

 ^{*P*} Bali, Bruckmann, Endrödi, Fodor, Katz et al. '11
 ^{*P*} '12
 ^{*P*} Endrödi '15
 ^{*P*}
- ▶ simulating up to $eB \approx 9 \text{ GeV}^2 \Rightarrow 4 \text{ GeV}^2 < eB_c < 9 \text{ GeV}^2$

D'Elia, Maio, Sanfilippo, Stanzione '21

Further results on magnetic fields

▶ fluctuations of conserved charges at B > 0, T > 0
⊘ Ding et al. '21

anomalous transport phenomena at B > 0
 Astrakhantsev et al. '20
 Brandt, Cuteri, Endrödi, Garnacho, Markó '22

magnetic susceptibility

Buividovich, Smith, von Smekal '21

beyond homogeneous magnetic fields

inhomogeneous magnetic fields
 Valois et al. '21

electric background fields

 P Endrődi, Markó '22

Summary

 closing down on the µ_B > 0 critical endpoint: lattice, FRG, DSE

 T – μ_I phase diagram (supersonic) pion condensation possible impact on cosmology

 T – B phase diagram and the critical point

