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Interaction: chiral effective field theory
(low-energy EFT of quantum chromodynamics)

• Effective degrees of freedom: nucleons, pions (and Δs)
• Intrinsic hierarchy from power counting

• Emergence of higher-body operators

Vnucl.
<latexit sha1_base64="ZIo1WRDajjC5GCughR+2cAq3kOs="></latexit>

V2B,0 + V2B,1 + V2B,2 + V2B,3 + ...
<latexit sha1_base64="OwI9NN8ArAFkgm53LfjeEc7VqG8="></latexit>

= V3B,2 + V3B,3 + ...
<latexit sha1_base64="dSs1KFk++Q1XdkQAxgs7sKjQ/tE="></latexit>

V4B,3 + ...
<latexit sha1_base64="awCbflmtzlPp/M2tV/nhbXuLngY="></latexit>

(two-body part)

(three-body part)

(four-body part)
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(e.g., systematically improvable wave function techniques)

+ + +

hierarchy from excitation level

mean field single/double/triple … excitation

Ab initio promise:
Systematic control over solution with 

predictive power and uncertainty 
quantification!
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Recent highlights from 2021/22
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28

50

82
208Pb

extension to heavy systems
Miyagi et al., PRC (2022)

stable

fission

β+

β-

⍺

decay modes

entanglement in nuclei
Tichai et al., arXiv:2207.01438

Atomic nuclei from lattice 
effective field theory or basis 

expansion methods

open-shell systems
LENPIC (2021/2022)

lattice EFT for mid-mass nuclei
Elhatisari et al., arXiv:2202.17488

novel normal ordering
Hebeler et al., arXiv: 2211.16262

electromagnetic response
Acharya et al., arXiv:2210.04632
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Nuclear lattice EFT
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FIG. 2. Left Panel: Short-range three nucleon forces at NNLO. The first is the one-pion exchange term cD shown on the left. The other
is the purely short-range term cE shown on the right. At order N3LO there are additional three-nucleon interactions associated with the
exchange of two pions, as well as the corrections from the renormalization of the cD and cE terms at N3LO order. Right Panel: Results for
nuclear binding energies using wave function matching. Calculated ground state and excited state energies of some selected nuclei with up
to A = 40 at N3LO in chiral effective field theory and comparison with experimental data. The symbols with a black border indicate nuclei
with unequal numbers of protons and neutrons. The nuclei used in the fit of the higher-order three-nucleon interactions are labelled with open
squares, while the other nuclei are predictions denoted with filled diamonds.
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FIG. 3. Left Panel: Predictions for charge radii of nuclei up to A = 40 at N3LO in chiral effective field theory and comparison with
experimental data. The symbols with a black border indicate nuclei with unequal numbers of protons and neutrons. Right Panel: Predictions
for pure neutron matter energy per neutron and symmetric nuclear matter energy per nucleon as a function of density at N3LO in
chiral effective field theory. For the pure neutron matter energy we use the number of neutrons from 14 to 80 and various box sizes from
6.58 fm to 13.2 fm, and for the symmetric nuclear matter energy we use the number of nucleons from 12 to 160 and a periodic box of length
9.21 fm. For comparison we show the results from variational (APR) [34], Auxiliary Field Diffusion MC calculations (GCR) [35], calculated
with N3LO/NNLO (two-nucleon/three-nucleon) chiral interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV) [36] and
NNLO chiral interactions with explicit delta degrees of freedom (�NNLO) [37].

systematic uncertainties for the charge radii calculations are more difficult to predict without a comprehensive study of the
dependence of charge radii upon the individual interactions. However, the agreement with empirical results is quite good, with
an RMSD of about 0.03 fm. Note that the larger errors for the heaviest nuclei are statistical and can be decreased by utilizing
greater computational resources.

In the right panel of Fig. 3, we present lattice results for the energy per nucleon versus density for pure neutron matter
and symmetric nuclear matter. None of the neutron matter and symmetric nuclear matter data were used to fit any interaction
parameters. The density is expressed as a fraction of the saturation density for nuclear matter, ⇢0 = 0.16 fm�3. For the neutron
matter calculations, we consider 14 to 80 neutrons in periodic box lengths ranging from 6.58 fm to 13.2 fm. For the symmetric
nuclear matter calculations, we use system sizes from 12 to 160 nucleons in a periodic box of length 9.21 fm. The comparisons
with several other published work are shown and detailed in the figure caption. We see that the neutron matter calculations
are in good agreement with previous calculations, and the symmetric nuclear matter calculations pass through the empirical
saturation point. The one-standard-deviation error bars represent computational uncertainties due to Monte Carlo errors and
infinite projection time extrapolation. Uncertainties associated with extrapolation to large system size are not included here

• Nuclear dynamics on space-time lattice 
Lähde, Meißner, Lee, Shen, Elhatisari, Epelbaum, Krebs, …

• Sampling via Quantum Monte Carlo techniques

• Emergence of clustering phenomena

• Recent extension to mid-mass systems (A < 40)
Elhatisari et al., arXiv:2202.17488

Very complicated
 in basis-expansion methods!

to the matter radius of an isolated alpha particle using the same interactions, rα = 1.63 fm, we conclude that our process of
identifying alpha cluster configurations is accurate and free of significant artifacts.

The three alpha clusters that we have identified define a triangle in three-dimensional space with interior angles θ1, θ2, and
180◦−θ1−θ2. In the left panel of Fig. 2, we show the probability distributions as a function of θ1 and θ2 for (a) the 0+1 ground
state, (b) 0+2 Hoyle state, (c) 2+1 , (d) 2+2 , (e) 3−1 , and (f) 0+3 states. The black solid line at θ2 = 180◦−θ1 separates the physical
region (lower left) and the unphysical region (upper right). The dashed white triangle formed by the line segments θ1 = 90◦,
θ2 = 90◦, and θ2 = 90◦ −θ1, represents cluster configurations that are right triangles. The interior region of the dashed white
triangle corresponds to configurations that are acute triangles, and the exterior region corresponds to obtuse triangles. The
other three white dashed line segments along the lines θ1 = θ2, θ1 = θ3, and θ2 = θ3 represent cluster configurations that
are obtuse isosceles triangles. For the 0+1 ground state, the probability distribution is strongly centered around an equilateral
triangle, θ1 = θ2 = θ3 = 60◦. The 2+1 and 3−1 states have similar equilateral triangular shapes. In contrast, the 0+2 Hoyle state
corresponds to an obtuse isosceles triangle. This finding is consistent with older NLEFT studies.32,33 The 2+2 and 0+3 states
also have obtuse isosceles triangular shapes.

Figure 2. Nuclear density distributions for the (a) 0+1 ground state, (b) 0+2 Hoyle state, (c) 2+1 , (d) 2+2 , (e) 3−1 , and (f) 0+3
states. The red (blue) color signals a high (low) probability. Left Panel: Density distribution for the two inner angles of the
triangle formed by the three alpha clusters. The two axes are for the two inner angles θ1 and θ2 measured in degrees. Right
Panel: Tomographic projection of the nuclear density for different states of 12C. In each case the orientation of the shortest
root-mean-square direction is aligned with the x axis.

We now define a model-independent tomographic projection of the three-dimensional nuclear density for the states of 12C.
In order to construct this projection, we first identify the x axis as the direction with the smallest RMS deviation of the nucleon
positions relative to the center of mass. For the nuclear states that we have already identified as having an equilateral triangular
shape, we rotate the density configurations along the x axis so that one of the three clusters is pointing along the positive z

direction. We then symmetrize with respect to 0◦, 120◦ and 240◦ rotations about the x axis. For nuclear states that we have
already identified as having an obtuse isosceles shape, we identify the z axis as the direction with the longest RMS deviation
of the nucleon positions relative to the c.m. We then rotate the density configurations along the z axis so that the alpha cluster
with the smallest z value has a positive y coordinate.

4/16

Shen et al., arXiv:2202.13596

Geometry of 12C states
Lattice EFT: (Euclidean time) projection Monte Carlo

e
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Representing the Hamiltonian

• reference state: single Slater 
determinant

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, March 1, 2018
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In-medium  
decoupling

Hergert et al., Phys. Rep. (2016)

• Goal: decoupling of elementary ph-excitations

H(s) = U†(s)HU(s)
<latexit sha1_base64="6hjjLySVM5SBZHEf8gmNccBQ9eI="></latexit>

• Input: nuclear Hamiltonian in second quantization

<latexit sha1_base64="sONL4hw/rBOYROH7ZOgSBozeVAI="></latexit>

Hnucl. = T + V2N + V3N + ...
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• Goal: decoupling of elementary ph-excitations

H(s) = U†(s)HU(s)
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• Approximation: discard induced operators

Keep operators to k-body level:  
IMSRG(k)

• Input: nuclear Hamiltonian in second quantization

<latexit sha1_base64="sONL4hw/rBOYROH7ZOgSBozeVAI="></latexit>

Hnucl. = T + V2N + V3N + ...
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• Goal: decoupling of elementary ph-excitations

• Ground-state energy from flowing Hamiltonian
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lim
s!�h�|H(s)|�i = E0

H(s) = U†(s)HU(s)
<latexit sha1_base64="6hjjLySVM5SBZHEf8gmNccBQ9eI="></latexit>

• Approximation: discard induced operators

Keep operators to k-body level:  
IMSRG(k)

• Input: nuclear Hamiltonian in second quantization
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FIG. 5. Ground-state energies of 16O obtained in various truncation schemes using the EM 1.8 NN-only Hamiltonian and an HF reference
state following the computational (left panel) and perturbative (right panel) truncation ordering for the fundamental commutators. Thicker,
darker bars correspond to the major truncations summarized in Table II. Thinner, lighter bars correspond to intermediate truncations where a
single fundamental commutator has been added relative to the truncation scheme to the left. The dashed line indicates the emax = 2 extrapolated
FCI result obtained for this Hamiltonian (see main text for details). The blue band indicates the range spanned by the results obtained from the
IMSRG(3)-N7 and IMSRG(3)-g5 truncations. The starting HF energy is provided in the bottom right corner.

and [2, 3] → 3 commutators deliver the main contributions to
corrections provided by the IMSRG(3)-N7 and IMSRG(3)-N8

truncations, respectively. The final IMSRG(3) result differs
from the extrapolated FCI result by 28 keV, quite similar to
the difference in the HF case. The right panel shows that con-
vergence to the IMSRG(3) result in the perturbative counting
approach is systematic in this case as well.

Switching to the EM 1.8/2.0 Hamiltonian, we consider in
Fig. 7 the IMSRG solution for various truncations for 16O
using a NAT reference state, where the underlying oscillator
frequency is h̄! = 20 MeV. In this case, the IMSRG(3)-
MP4 truncation result is about 270 keV more repulsive
than the IMSRG(2) result, and the IMSRG(3)-N7 provides
only small corrections to the IMSRG(3)-MP4 result. These

FIG. 6. Same as Fig. 5 but using a NAT reference state.
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FIG. 1. File size of the three-body matrix elements with the
single-precision floating point numbers. The horizontal dashed line
indicates 100 GB, which is a typical limit of the memory per node in
usual work stations.

One way to overcome this limitation is to apply an im-
portance truncation and/or tensor factorization [36,37] to the
3N matrix elements, which would dramatically reduce the
required RAM while retaining sufficient accuracy. Before
resorting to these techniques, however, we observe that the
most of today’s practical calculations are based on the normal-
ordered two-body (NO2B) approximation [38]. This means
we do not need the full set of 3N matrix elements in actual
applications, particularly in the heavy-mass region. In this
work, we demonstrate the efficiency of generating and storing
only those combinations of 3N matrix elements involved in
the NO2B approximation and discuss the E3max convergence
of heavy nuclei around 132Sn.

The structure of this paper is as follows. In Sec. II, we
introduce a novel procedure to store the 3N matrix elements
relevant to the NO2B approximation. In Sec. III, the asymp-
totic behavior with respect to E3max is discussed. In Sec. IV,
we demonstrate large E3max calculations around 132Sn, using
the well-established NN+3N 1.8/2.0 (EM) interaction [39].
We also discuss the uncertainty from free-space 3N similarity
renormalization group (SRG) evolution and present results for
132Sn with the chiral NN+3N(lnl) interaction [40]. Finally, we
conclude in Sec. V.

II. CALCULATION OF 3N MATRIX ELEMENTS

In Fig. 1 we show the estimated file size of the 3N matrix
elements as a function of E3max for a fixed emax = 16. The
curve “full” illustrates that the typical basis-size limit is ap-
proximately E3max = 16–18 for a memory limit of about 100
GB. This limit, however, is typically not sufficient to obtain
converged results for nuclei beyond A = 100 as discussed in
Refs. [18,20–22,41], and which we also demonstrate below.
Towards heavier systems, the contributions of the residual
3N interactions is expected to be comparable to the trunca-
tion error of the many-body method [42]. Since the memory
requirement for storing the full set of 3N matrix elements
is prohibitive, we instead aim to exploit the simplifications

offered by the NO approximation. In order to identify the min-
imal subset of 3N matrix elements for the NO2B Hamiltonian,
we begin by reviewing the normal-ordering procedure.

A. NO2B 3N matrix elements

Our starting Hamiltonian in second-quantized form is

H =
∑

p′ p

tp′ pa†
p′ap + 1

4

∑

pp′qq′

V NN
p′q′ pqa†

p′a†
q′aqap

+ 1
36

∑

pp′qq′rr′

V 3N
p′q′r′ pqra†

p′a†
q′a†

r′araqap, (1)

where tp′ p, V NN
p′q′ pq, and V 3N

p′q′r′ pqr are the one-, two-, and
three-body matrix elements, respectively. The index p
labels the single-particle orbit with quantum numbers
{np, !p, jp, mp, tzp} corresponding to the radial quantum num-
ber, orbital angular momentum, total angular momentum,
total angular momentum projection, and isospin projection,
respectively. Performing normal ordering with respect to a
reference state characterized by a one-body density matrix
ρp′ p = 〈a†

p′ap〉 and discarding the residual 3N part, we obtain
the NO2B Hamiltonian:

H (NO2B) = E0 +
∑

p′ p

fp′ p{a†
p′ap}

+ 1
4

∑

pp′qq′

#p′q′ pq{a†
p′a†

q′aqap}, (2)

where the braces {. . .} indicate that the enclosed string of
creation and annihilation operators are normal ordered with
respect to the used reference state. The Hamiltonian is now
expressed in terms of a zero-body part

E0 =
∑

p′ p

ρp′ ptp′ p + 1
2

∑

pp′qq′

ρp′ pρq′qV NN
p′q′ pq

+ 1
6

∑

pp′qq′rr′

ρp′ pρq′qρr′rV 3N
p′q′r′ pqr, (3)

a normal-ordered one-body part

fp′ p = tp′ p +
∑

q′q

ρq′qV NN
p′q′ pq + 1

2

∑

qq′rr′

ρq′qρr′rV 3N
q′r′ p′qr p, (4)

and a normal-ordered two-body part

#p′q′ pq = V NN
p′q′ pq +

∑

r′r

ρr′rV 3N
p′q′r′ pqr . (5)

The accuracy of the NO2B approximation has been investi-
gated for ground-state energies [38,42,43], where it was found
that by 16O the error is at the level of 1% of the binding energy.
With increasing mass number, this error should decrease as a
fraction of the total binding energy.1

1The approximation also breaks translational invariance [43], but
this is only important for light nuclei (i.e., A ! 16), where the NO2B
truncation is not necessary and convergence in E3max can be obtained
by conventional methods.
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FIG. 2. Ground-state energy of 132Sn as a function of E3max, com-
puted in many-body perturbation theory to second and third order and
in IMSRG(2).

within a few MeV. For all points in Fig. 2, the 3N matrix
elements are stored and read in using half-precision float-
ing point numbers to reduce the memory footprint. Up to
E3max = 24, we can use single-precision numbers to check
the impact of this choice. At emax = 14, E3max = 24, the half-
precision calculation yields HF energies shifted by −2.14
MeV, while the second- and third-order MBPT corrections
are changed by 0.68 MeV and 0.11 MeV, respectively, yield-
ing a total difference up to third order of −1.35 MeV. This
is completely negligible compared with uncertainties arising
from many-body truncations (which we expect to be on the
order of 20 MeV here)3 and the interaction itself. We also
show in Fig. 2 the convergence with respect to emax. At
E3max = 28, the third-order energies for emax = 14, 16, 18, are
−1115.85 MeV, −1117.61 MeV, and −1118.16 MeV, respec-
tively, demonstrating convergence at the 1 MeV level.

Since the second-order correction of ≈ −300 MeV is much
larger than third-order correction of ≈ −20 MeV, the corre-
lation energy is dominated by second-order correction. This
supports the claim that the extrapolation formula Eq. (21)
based on the second-order energy correction is applicable in
the case of the HF-MBPT(3) and IMSRG, which includes
correlations beyond second order. In Fig. 3(a), we show
n = 2, 4, 6 curves of Eq. (21) fitted with the HF-MBPT(2)
and IMSRG energy results at emax = 14, indicated by the
solid symbols in the panel. We see that Eq. (21) works for
IMSRG energies as well. Figures 3(b) and 3(c) show the
extrapolated energies to E3max = 28, which is the largest value
we can calculate. Since the extrapolated point is finite, the
uncertainty of all the fitting parameters can propagate to un-

3This estimate is based on the difference between the MBPT(2),
MBPT(3), and IMSRG(2) energies, and is consistent with Ref. [60]
where the error at MBPT(3) for similarly soft interactions was found
to be 0.1–0.2 MeV per particle. We have further corroborated this
estimate with MBPT(4) calculations in a smaller emax space.

FIG. 3. (a) The ground-state energy of 132Sn computed in
MBPT(2) and IMSRG(2), as a function of E3max, and the extrapolated
energies for (b) MBPT(2) and (c) IMSRG. The points used in the
fitting procedure are indicated by the solid symbols in (a). The
dashed and solid curves are obtained by fitting the functions using
n = 2, 4, 6 in Eq. (21) with the data points of MBPT(2) (emax = 14)
and IMSRG (emax = 14) results, respectively. In (b) and (c), the
energies are extrapolated to E3max = 28. The error bars indicate the
standard deviation of the distribution, which are obtained with 104

samples drawn from the covariance matrix of the fit.

certainty of the extrapolated energies. The uncertainty of the
energy is estimated as the standard deviation of the 10000
samples generated with the covariance matrix from the fit.
Comparing the extrapolated and calculated energies, we see
that n = 2 (Gaussian) reproduces the energies for both HF-
MBPT(2) and IMSRG cases, and n = 2 is the most likely
to reproduce the convergence behavior in this case. With
n = 2 formula, we observed that the extrapolated energy to
E3max = 42 is −1110.57(2) [−1097.13(2)] MeV using the
IMSRG [HF-MBPT(2)] data 18 ! E3max ! 23. As already
mentioned in Sec. I, we have observed a lack of conver-
gence with respect to E3max in some calculations of heavier
systems. One particular example is 127Cd as discussed in
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FIG. 1. File size of the three-body matrix elements with the
single-precision floating point numbers. The horizontal dashed line
indicates 100 GB, which is a typical limit of the memory per node in
usual work stations.

One way to overcome this limitation is to apply an im-
portance truncation and/or tensor factorization [36,37] to the
3N matrix elements, which would dramatically reduce the
required RAM while retaining sufficient accuracy. Before
resorting to these techniques, however, we observe that the
most of today’s practical calculations are based on the normal-
ordered two-body (NO2B) approximation [38]. This means
we do not need the full set of 3N matrix elements in actual
applications, particularly in the heavy-mass region. In this
work, we demonstrate the efficiency of generating and storing
only those combinations of 3N matrix elements involved in
the NO2B approximation and discuss the E3max convergence
of heavy nuclei around 132Sn.

The structure of this paper is as follows. In Sec. II, we
introduce a novel procedure to store the 3N matrix elements
relevant to the NO2B approximation. In Sec. III, the asymp-
totic behavior with respect to E3max is discussed. In Sec. IV,
we demonstrate large E3max calculations around 132Sn, using
the well-established NN+3N 1.8/2.0 (EM) interaction [39].
We also discuss the uncertainty from free-space 3N similarity
renormalization group (SRG) evolution and present results for
132Sn with the chiral NN+3N(lnl) interaction [40]. Finally, we
conclude in Sec. V.

II. CALCULATION OF 3N MATRIX ELEMENTS

In Fig. 1 we show the estimated file size of the 3N matrix
elements as a function of E3max for a fixed emax = 16. The
curve “full” illustrates that the typical basis-size limit is ap-
proximately E3max = 16–18 for a memory limit of about 100
GB. This limit, however, is typically not sufficient to obtain
converged results for nuclei beyond A = 100 as discussed in
Refs. [18,20–22,41], and which we also demonstrate below.
Towards heavier systems, the contributions of the residual
3N interactions is expected to be comparable to the trunca-
tion error of the many-body method [42]. Since the memory
requirement for storing the full set of 3N matrix elements
is prohibitive, we instead aim to exploit the simplifications

offered by the NO approximation. In order to identify the min-
imal subset of 3N matrix elements for the NO2B Hamiltonian,
we begin by reviewing the normal-ordering procedure.

A. NO2B 3N matrix elements

Our starting Hamiltonian in second-quantized form is

H =
∑

p′ p

tp′ pa†
p′ap + 1

4

∑

pp′qq′

V NN
p′q′ pqa†

p′a†
q′aqap

+ 1
36

∑

pp′qq′rr′

V 3N
p′q′r′ pqra†

p′a†
q′a†

r′araqap, (1)

where tp′ p, V NN
p′q′ pq, and V 3N

p′q′r′ pqr are the one-, two-, and
three-body matrix elements, respectively. The index p
labels the single-particle orbit with quantum numbers
{np, !p, jp, mp, tzp} corresponding to the radial quantum num-
ber, orbital angular momentum, total angular momentum,
total angular momentum projection, and isospin projection,
respectively. Performing normal ordering with respect to a
reference state characterized by a one-body density matrix
ρp′ p = 〈a†

p′ap〉 and discarding the residual 3N part, we obtain
the NO2B Hamiltonian:

H (NO2B) = E0 +
∑

p′ p

fp′ p{a†
p′ap}

+ 1
4

∑

pp′qq′

#p′q′ pq{a†
p′a†

q′aqap}, (2)

where the braces {. . .} indicate that the enclosed string of
creation and annihilation operators are normal ordered with
respect to the used reference state. The Hamiltonian is now
expressed in terms of a zero-body part

E0 =
∑

p′ p

ρp′ ptp′ p + 1
2

∑

pp′qq′

ρp′ pρq′qV NN
p′q′ pq

+ 1
6

∑

pp′qq′rr′

ρp′ pρq′qρr′rV 3N
p′q′r′ pqr, (3)

a normal-ordered one-body part

fp′ p = tp′ p +
∑

q′q

ρq′qV NN
p′q′ pq + 1

2

∑

qq′rr′

ρq′qρr′rV 3N
q′r′ p′qr p, (4)

and a normal-ordered two-body part

#p′q′ pq = V NN
p′q′ pq +

∑

r′r

ρr′rV 3N
p′q′r′ pqr . (5)

The accuracy of the NO2B approximation has been investi-
gated for ground-state energies [38,42,43], where it was found
that by 16O the error is at the level of 1% of the binding energy.
With increasing mass number, this error should decrease as a
fraction of the total binding energy.1

1The approximation also breaks translational invariance [43], but
this is only important for light nuclei (i.e., A ! 16), where the NO2B
truncation is not necessary and convergence in E3max can be obtained
by conventional methods.
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FIG. 2. Ground-state energy of 132Sn as a function of E3max, com-
puted in many-body perturbation theory to second and third order and
in IMSRG(2).

within a few MeV. For all points in Fig. 2, the 3N matrix
elements are stored and read in using half-precision float-
ing point numbers to reduce the memory footprint. Up to
E3max = 24, we can use single-precision numbers to check
the impact of this choice. At emax = 14, E3max = 24, the half-
precision calculation yields HF energies shifted by −2.14
MeV, while the second- and third-order MBPT corrections
are changed by 0.68 MeV and 0.11 MeV, respectively, yield-
ing a total difference up to third order of −1.35 MeV. This
is completely negligible compared with uncertainties arising
from many-body truncations (which we expect to be on the
order of 20 MeV here)3 and the interaction itself. We also
show in Fig. 2 the convergence with respect to emax. At
E3max = 28, the third-order energies for emax = 14, 16, 18, are
−1115.85 MeV, −1117.61 MeV, and −1118.16 MeV, respec-
tively, demonstrating convergence at the 1 MeV level.

Since the second-order correction of ≈ −300 MeV is much
larger than third-order correction of ≈ −20 MeV, the corre-
lation energy is dominated by second-order correction. This
supports the claim that the extrapolation formula Eq. (21)
based on the second-order energy correction is applicable in
the case of the HF-MBPT(3) and IMSRG, which includes
correlations beyond second order. In Fig. 3(a), we show
n = 2, 4, 6 curves of Eq. (21) fitted with the HF-MBPT(2)
and IMSRG energy results at emax = 14, indicated by the
solid symbols in the panel. We see that Eq. (21) works for
IMSRG energies as well. Figures 3(b) and 3(c) show the
extrapolated energies to E3max = 28, which is the largest value
we can calculate. Since the extrapolated point is finite, the
uncertainty of all the fitting parameters can propagate to un-

3This estimate is based on the difference between the MBPT(2),
MBPT(3), and IMSRG(2) energies, and is consistent with Ref. [60]
where the error at MBPT(3) for similarly soft interactions was found
to be 0.1–0.2 MeV per particle. We have further corroborated this
estimate with MBPT(4) calculations in a smaller emax space.

FIG. 3. (a) The ground-state energy of 132Sn computed in
MBPT(2) and IMSRG(2), as a function of E3max, and the extrapolated
energies for (b) MBPT(2) and (c) IMSRG. The points used in the
fitting procedure are indicated by the solid symbols in (a). The
dashed and solid curves are obtained by fitting the functions using
n = 2, 4, 6 in Eq. (21) with the data points of MBPT(2) (emax = 14)
and IMSRG (emax = 14) results, respectively. In (b) and (c), the
energies are extrapolated to E3max = 28. The error bars indicate the
standard deviation of the distribution, which are obtained with 104

samples drawn from the covariance matrix of the fit.

certainty of the extrapolated energies. The uncertainty of the
energy is estimated as the standard deviation of the 10000
samples generated with the covariance matrix from the fit.
Comparing the extrapolated and calculated energies, we see
that n = 2 (Gaussian) reproduces the energies for both HF-
MBPT(2) and IMSRG cases, and n = 2 is the most likely
to reproduce the convergence behavior in this case. With
n = 2 formula, we observed that the extrapolated energy to
E3max = 42 is −1110.57(2) [−1097.13(2)] MeV using the
IMSRG [HF-MBPT(2)] data 18 ! E3max ! 23. As already
mentioned in Sec. I, we have observed a lack of conver-
gence with respect to E3max in some calculations of heavier
systems. One particular example is 127Cd as discussed in
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FIG. 8. Same as the middle panel of Fig.  5 but for the charge radius.
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and hence allows to perform NO in large basis spaces with-
out truncations in energy quantum numbers. The resulting
e↵ective interaction in the Jacobi basis explicitly depends on
the cm degrees of freedom, characterized by two additional
quantum numbers L̄cm and J̄tot and can be subsequently trans-
formed to a single-particle basis in a straightforward way.
We studied the convergence behavior with respect to the new
quantum numbers and found excellent agreement for individ-
ual matrix elements obtained in the Jacobi and the traditional
NO approach for an 16O HF reference state.

We then explored ground-state energies of light, medium-
mass, and heavy closed-shell nuclei from 16O to 208Pb using
the IMSRG based on the 1.8/2.0 EM interaction of Ref. [  36 ]
and investigated in detail the convergence of the results for
both NO frameworks. Excellent agreement was found for the
converged energies of 16O, 48Ca, and 78Ni, while for the heav-
ier systems 132Sn and 208Pb we found small relative energy
di↵erences on the order of about one per mille of the total
ground-state energy, which can be traced back to di↵erences

in the treatment of the antisymmetrization of the 3N interac-
tion and the employed floating point precision, which we had
kept higher in this work.

In addition, we explored the impact of the E
(3)
max cut used

for the HF calculation of the reference state in the Jacobi NO.
Even for heavy nuclei like 132Sn we obtained basically iden-
tical results for references states computed using E

(3)
max = 18

and E
(3)
max = 28. Thus, at the HF level, smaller E

(3)
max values are

needed than for the correlation energy.
Furthermore we observed a systematic increase in the max-

imum values of L̄cm and J̄tot required to obtain converged en-
ergies as the mass number of the nucleus increases. While
L̄

max
cm = J̄

max
tot ⇡ 5 is su�cient for 16O, we need to go to

L̄
max
cm = J̄

max
tot ⇡ 9 for 78Ni and eventually to L̄

max
cm = J̄

max
tot ⇡ 13

for 208Pb. This trend is comparable to the single-particle ap-
proach, where increased E

(3)
max values are required to obtain

converged energies for higher mass numbers. However, go-
ing to larger E

(3)
max is significantly more expensive in mem-

ory and computing time. Of course, increasing the cuts on
the quantum numbers L̄

max
cm and J̄

max
tot increases the basis size

and hence also the computational complexity of the Jacobi
NO framework as well. In its current version the run time for
one NO calculation for heavy nuclei like 132Sn takes approxi-
mately one day per J̄tot channel. Calculations for lighter sys-
tems are significantly faster. However, speed-ups may be re-
alized by future optimizations. More refined reference states,
such as natural orbital basis states could also be straightfor-
wardly applied in the Jacobi NO. Moreover, the framework
can be straightforwardly applied to any rotationally invariant
density [ 43 ]. Therefore, the Jacobi NO approach can be ex-
tended to open-shell nuclei by using, e.g., equal-filling HF or
spherical Hartree-Fock-Bogoliubov reference states [ 44 ,  45 ].
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In-medium no-core shell model
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• Hybrid approach based on multi-reference 
extension of IMSRG flow equation

Small-scale diagonalization

Small-scale diagonalization

In-medium decoupling

• Initial diagonalization captures static 
correlations in the reference state

• Final diagonalization gives immediate access 
to various many-body observables

• No-core character limits available mass 
range to medium-light nuclei (A < 30)

Gebrerufael,  Vobig, Roth, Mongelli, Hergert, …

… no mean-field reference state!

Merge IMSRG and 
no-core shell model (NCSM) 

IMSRG

NCSM

NCSM
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IM-NCSM: open-shell nuclei

• IM-NCSM calculations for ground-state 
observables in oxygen chain
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FIG. 12. (Color online) Ground-state energies and point-proton radii for even oxygen isotopes obtained in the IM-NCSM
with SMS interactions from N2LO to N4LO+ with ⇤ = 450 MeV (left-hand panels) and ⇤ = 500 MeV (right-hand panels) for
flow-parameter ↵ = 0.08 fm4. The error bands show the chiral truncation uncertainties at the 95% confidence level obtained
with the Bayesian model for N2LO and N4LO+.

servables on Nmax, N ref
max, and the IM-SRG flow param-

eter. As for most ground-state calculations a variation
of the N

ref
max truncation parameter has the largest im-

pact on the observables. Therefore, we use the di↵erence
between N

ref
max = 0 and 2 to assess the many-body uncer-

tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cuto↵s we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cuto↵s shown in the upper panels
of Fig. 12. As expected, the LO interaction does not
provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at

N2LO again show a sizable overbinding and deviate from
the general systematics. A similar e↵ect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the di↵erent chiral orders and the two cuto↵s. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the di↵erent orders
and the two cuto↵ values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.

These trends continue if we proceed to heavier nuclei.
In Fig. 13 we show the ground state energies and the rms
radii of 16O and 24O as well as 40Ca and 48Ca obtained in
single-reference IM-SRG calculations, which correspond

Energies/radii for oxygen isotopes

LENPIC collaboration, arXiv:2206.13303

• Many-body uncertainties from reference 
state variations and comparison to NCSM

• Interaction uncertainties from systematic 
variation of chiral order of Hamiltonian

Energies: ~ 2 MeV
Radii: ~ 0.05 fm

• Construction of total error bands from 
Bayesian analysis using Gaussian processes

extension to  deformed 
Ne/Mg isotopes ongoing

Mongelli, PhD thesis (2022)
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• Construction of ab-initio inspired valence-
space interactions based on chiral EFT

Stroberg et al.,  Ann. Rev. Nucl. Part. Sci (2019)

In the language of the renormalization group, He↵ is a fixed point of the RG flow.

One choice for ⌘(s), which is used in the calculations we will describe here is the White

generator (145, 169)

⌘Wh(s) ⌘ Hod(s)
�(s)

. (17)

For present and future use, we have introduced a convenient superoperator notation

(cf. (170)), in which we indicate division of the operator O by a suitably defined energy

denominator � is defined as

h�i|
O
�
|�ji ⌘

h�i|O|�ji
✏i � ✏j

(18)

which can be thought of as element-wise division. Here ✏i, ✏j are energies associated with

the basis states �i, �j . The quantity O
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itself is an operator whose Fock-space expression is

O
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†
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Returning to the flow equation, it is clear that if Hod ! 0, then ⌘ ! 0 and by Eq. (11)

we see that dH(s)
ds ! 0, so He↵ is indeed a fixed point of the flow. One potential issue

with the generator (17) is that a vanishing energy denominator will cause ⌘ to diverge. An

alternative, also suggested by White (169) (see also (171)), is

⌘atan(s) ⌘ 1
2
atan

✓
2Hod(s)

�(s)

◆
. (20)

The arctangent—motivated by the solution of a 2⇥2 system via Jacobi rotations—regulates

the divergent behavior of Eq. (17) in the presence of small denominators. The arctangent

and division by the energy denominator in Eq. (20) should be interpreted as operating

element-wise, as described above.
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Figure 2: A schematic representing of how the IMSRG approach obtains the e↵ective in-

teraction He↵ by progressively suppressing the o↵-diagonal terms of H. (a)s = 0, (b)s = 5,

(c)s = 30

The IMSRG is formulated in terms of Fock-space operators, and so its computational

cost scales polynomially with the basis size N , but not explicitly with the number of particles

being treated. In practical applications, we truncate all operators at a consistent particle

rank to close the system of flow equations arising from Eq. (11) (see Appendix A). We

also set up the decoupling conditions to be minimally invasive to avoid an uncontrolled
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• Modify decoupling to target valence space
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• Construction of ab-initio inspired valence-
space interactions based on chiral EFT

• Final computational step requires large-
space shell-model diagonalization
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The IMSRG is formulated in terms of Fock-space operators, and so its computational

cost scales polynomially with the basis size N , but not explicitly with the number of particles

being treated. In practical applications, we truncate all operators at a consistent particle

rank to close the system of flow equations arising from Eq. (11) (see Appendix A). We

also set up the decoupling conditions to be minimally invasive to avoid an uncontrolled
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• Modify decoupling to target valence space

• Non-perturbative resummation of ph-
correlations into active-space Hamiltonian



A. Tichai 09.12.2022KHuK Annual Meeting

Ab initio shell-model interactions

11

• Construction of ab-initio inspired valence-
space interactions based on chiral EFT

• Final computational step requires large-
space shell-model diagonalization

Stroberg et al.,  Ann. Rev. Nucl. Part. Sci (2019)

In the language of the renormalization group, He↵ is a fixed point of the RG flow.

One choice for ⌘(s), which is used in the calculations we will describe here is the White

generator (145, 169)

⌘Wh(s) ⌘ Hod(s)
�(s)

. (17)

For present and future use, we have introduced a convenient superoperator notation

(cf. (170)), in which we indicate division of the operator O by a suitably defined energy

denominator � is defined as

h�i|
O
�
|�ji ⌘

h�i|O|�ji
✏i � ✏j

(18)

which can be thought of as element-wise division. Here ✏i, ✏j are energies associated with

the basis states �i, �j . The quantity O
�

itself is an operator whose Fock-space expression is

O
�

=
X

ij

Oij

✏i � ✏j
a†
iaj +

1
4

X

ijkl

Oijkl

✏i + ✏j � ✏k � ✏l
a†
ia

†
jalak + . . . (19)

Returning to the flow equation, it is clear that if Hod ! 0, then ⌘ ! 0 and by Eq. (11)

we see that dH(s)
ds ! 0, so He↵ is indeed a fixed point of the flow. One potential issue

with the generator (17) is that a vanishing energy denominator will cause ⌘ to diverge. An

alternative, also suggested by White (169) (see also (171)), is

⌘atan(s) ⌘ 1
2
atan

✓
2Hod(s)

�(s)

◆
. (20)

The arctangent—motivated by the solution of a 2⇥2 system via Jacobi rotations—regulates

the divergent behavior of Eq. (17) in the presence of small denominators. The arctangent

and division by the energy denominator in Eq. (20) should be interpreted as operating

element-wise, as described above.

P Q

P

Q

P Q

P

Q

P Q

P

Q

dH
ds

dH
ds

(a) (b) (c)

Figure 2: A schematic representing of how the IMSRG approach obtains the e↵ective in-

teraction He↵ by progressively suppressing the o↵-diagonal terms of H. (a)s = 0, (b)s = 5,

(c)s = 30

The IMSRG is formulated in terms of Fock-space operators, and so its computational

cost scales polynomially with the basis size N , but not explicitly with the number of particles

being treated. In practical applications, we truncate all operators at a consistent particle

rank to close the system of flow equations arising from Eq. (11) (see Appendix A). We

also set up the decoupling conditions to be minimally invasive to avoid an uncontrolled

12 Stroberg, Hergert, Bogner, and Holt

In the language of the renormalization group, He↵ is a fixed point of the RG flow.

One choice for ⌘(s), which is used in the calculations we will describe here is the White

generator (145, 169)

⌘Wh(s) ⌘ Hod(s)
�(s)

. (17)

For present and future use, we have introduced a convenient superoperator notation

(cf. (170)), in which we indicate division of the operator O by a suitably defined energy

denominator � is defined as

h�i|
O
�
|�ji ⌘

h�i|O|�ji
✏i � ✏j

(18)

which can be thought of as element-wise division. Here ✏i, ✏j are energies associated with

the basis states �i, �j . The quantity O
�

itself is an operator whose Fock-space expression is

O
�

=
X

ij

Oij

✏i � ✏j
a†
iaj +

1
4

X

ijkl

Oijkl

✏i + ✏j � ✏k � ✏l
a†
ia

†
jalak + . . . (19)

Returning to the flow equation, it is clear that if Hod ! 0, then ⌘ ! 0 and by Eq. (11)

we see that dH(s)
ds ! 0, so He↵ is indeed a fixed point of the flow. One potential issue

with the generator (17) is that a vanishing energy denominator will cause ⌘ to diverge. An

alternative, also suggested by White (169) (see also (171)), is
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The arctangent—motivated by the solution of a 2⇥2 system via Jacobi rotations—regulates

the divergent behavior of Eq. (17) in the presence of small denominators. The arctangent

and division by the energy denominator in Eq. (20) should be interpreted as operating

element-wise, as described above.
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The IMSRG is formulated in terms of Fock-space operators, and so its computational

cost scales polynomially with the basis size N , but not explicitly with the number of particles

being treated. In practical applications, we truncate all operators at a consistent particle

rank to close the system of flow equations arising from Eq. (11) (see Appendix A). We

also set up the decoupling conditions to be minimally invasive to avoid an uncontrolled

12 Stroberg, Hergert, Bogner, and Holt

Valence-space  
decoupling

• Versatility: access to diverse set of 
observables from shell-model codes

• Modify decoupling to target valence space

• Non-perturbative resummation of ph-
correlations into active-space Hamiltonian



A. Tichai 09.12.2022KHuK Annual Meeting

Ab initio shell-model interactions
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• Construction of ab-initio inspired valence-
space interactions based on chiral EFT

• Final computational step requires large-
space shell-model diagonalization

Stroberg et al.,  Ann. Rev. Nucl. Part. Sci (2019)
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Valence-space  
decoupling

• Versatility: access to diverse set of 
observables from shell-model codes

• Modify decoupling to target valence space

• Non-perturbative resummation of ph-
correlations into active-space Hamiltonian

Challenge:
Computational cost of 

diagonalization
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• Configuration interaction: inefficient representation of many-body state
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• DMRG provides a variational procedure for the calculation of expectation values
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complexity 2N
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DMRG/CI energies vs. effective dimension of HA

• DMRG: economic representation 
of the many-body wave function

• Very slow convergence of the 2+ 
excited state in CI calculations

• Robust convergence of DMRG 
energies at large bond dimension
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E2+=≠194.124± 0.008MeV
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Tichai, Knecht, Kruppa, Legeza, Moca, Schwenk, Werner, Zarand 
arXiv:2207.01438

Experimental input for
neutron-rich nuclei needed!

• DMRG does extend CI capacities
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Entanglement and shell structure
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• Pronounced kink at 78Ni hints at neutron 
shell closure (~ dominated by HF)

Total entropy in even-mass nickel isotopes

Entropy is a good 
proxy for shell closures!

experiment: Taniuchi et al., Nature (2019)

Tichai et al., arXiv:2207.01438
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FIG. 2. Neutron, proton, and total entropies (top) and 2+ excitation
energies (bottom) along even-mass nickel isotopes. Entropies are
calculated at bond dimension M = 10240 whereas for the excitation
energies the bond dimension was varied between M = 256 � 10240.
Experimental values are taken from Ref. [65].

Neutron-rich nickel isotopes from VS-DMRG.– To show
the power of the VS-DMRG, we apply this new approach
to the description of neutron-rich nickel isotopes that are at-
tracting significant experimental attention, e.g., with the re-
cent discovery of the doubly magic nature of 78Ni [66]. In
fact, ab initio calculations approaching 78Ni require addi-
tional truncations of the configuration interaction (CI) or shell
model space when exploring a 0~! valence space on top of
a 60Ca core [67]. In this work, the CI calculations haven
been performed using the KSHELL [68] and BIGSTICK [69]
codes, while the DMRG calculations together with quantum-
information-based analysis tools used the DMRG-Budapest
program package [70].

In Fig. 1 we compare large-scale CI and VS-DMRG calcu-
lations for 78Ni based on the same VS-IMSRG interaction as
in Ref. [66]. The top panel shows the dimension of the CI and
VS-DMRG spaces, respectively. For 78Ni, the FCI dimension
is 2.3 ·1011, while our largest CI calculations involved 1.9 ·109

configurations employing a truncation at Tmax = 7 particle-
hole (ph) excitations. In contrast, the dimension of the DMRG
space increases only gradually, and is well tractable even for
the largest considered bond dimension M = 10240, with cor-
responding configuration space of ⇡ 107, two orders of mag-
nitude below the largest accessible CI dimension. The DMRG
dimension is essentially the dimension of the space spanned

FIG. 3. Neutron and proton entropies from VS-DMRG calculations
for the oxygen chain (left) and for the evolution at N = 16 from the
closed proton shell to 26Ne and 28Mg (right). Vertical dashed lines
indicate neutron shell closures.

by the two block spaces and the two orbitals, ⇠ M2d2, further
constrained by selection rules for parity, isospin and angular-
momentum projection. Figure 1 clearly shows that the VS-
DMRG results for the ground and first 2+ excited states reveal
a more robust convergence pattern compared to the CI cal-
culation. While the ground-state energy converges system-
atically in the CI case, there is still a sizeable linear trend
present for the first excited 2+ state, making the extrapola-
tion of the excitation energy challenging. This may poten-
tially hint at relevant 8p8h excitations missing in the Tmax = 7
truncation. In contrast, the VS-DMRG results converge sys-
tematically beyond M = 1024. Fitting a quadratic polynomial
fextr.(1/M) = a/M2 + b/M + c enables a robust extrapolation
of the energies [42]. Extrapolation uncertainties are obtained
by taking into account only the 3, 4, 5 data points correspond-
ing to the largest bond dimensions, yielding a VS-DMRG es-
timate of E?2+ = 3.007 ± 0.017 MeV. At much lower space
dimensions, the VS-DMRG approach thus yields much lower
uncertainties compared to CI (E?2+ = 3.141 ± 0.205 MeV).

Next we study the emergence of shell structure from the
perspective of the information entropy from our VS-DMRG
calculations. Figure 2 displays neutron, proton and total en-
tropies and 2+ excitation energies for 70�80Ni. The total en-
tropy shows a pronounced kink for 78Ni consistent with its
doubly magic nature. The proton contribution to the total en-
tropy is small from 70Ni to 78Ni and then exhibits a strong
increase to 80Ni. We attribute this sudden increase of proton
correlations to the onset of nuclear deformation e↵ects. This
is also consistent with the rapid transition from spherical to
deformed ground states beyond 78Ni predicted in Ref. [66].
As expected from the VS-IMSRG results in Ref. [66], the
VS-DMRG reproduces nicely the high 2+ excitation energy
in 78Ni, with an improved result of E?2+ = 3.01 MeV com-
pared to the published VS-IMSRG excitation energy E?2+ .
3.34 MeV) [67]. The di↵erence to the experimental value of
E?2+ = 2.6 MeV is therefore significantly decreased for this

shell closure
• Extract entanglement entropy from one-

body density of nuclear ground state

• Characterization of many-body systems

Closed-shell system: weak correlations

Open-shell system: strong correlations

see alse Robin et al., PRC (2021)
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More observables!

• Calculation of electromagnetic observables 
from first principles in medium-mass systems

15

Acharya, Sobczyk, Bacca, Bonaiti, Miorelli, Hagen, …

Merge coupled cluster (CC) theory 
with integral transformations 

• Strong sensitivity to higher-body correlations

Acharya et al.

Figure 5. The ~⌦-convergence pattern of ↵D and m1 for 8He calculated with �NLOGO(450) and
�N2LOGO(450) at fixed Nmax = 14. The green and blue bands indicate the CC truncation uncertainty.
The black points are the results obtained including 3p-3h excitations in both the ground- and excited-state
computations.

convergence in Nmax and to the truncation of the coupled-cluster expansion, according to the strategy
illustrated in Ref. [65]. Regarding the first source of uncertainty, the maximum available model space is
Nmax = 14, so we consider the residual ~⌦-dependence at this Nmax as the uncertainty in the model space
expansion. To assess the uncertainty in the coupled-cluster expansion, we take two different approximation
schemes, the CCSD and the CCSDT-1, since we have no higher order coupled-cluster approximations
available. The truncation uncertainty is then estimated taking half of the difference between the CCSD and
CCSDT-1 results. The two contributions are then summed in quadrature.

To complement our previous analysis, we consider in this work the dependence on the order of the
�EFT expansion in the case of the �-full interaction model, by providing a new calculation at a lower
order (NLO). In Figure 5, we show the ~⌦ convergence pattern of ↵D and m1 for the �NLOGO(450) and
�N2LOGO(450) potentials [17], indicating with bands the contribution of the coupled-cluster truncation
uncertainty. In the case of the dipole polarizability, the theoretical error receives substantial contributions
from both the many-body method and the residual dependence on the coupled-cluster convergence
parameters. The polarizability is sensitive to the outer part of the nuclear wave function, and this makes
the convergence slower for a loosely-bound system like 8He. �NLOGO(450) predicts a slightly larger
polarizability with respect to �N2LOGO(450). Taking into account the uncertainty budget coming from
the many-body solver (around 7% of the central value), the two results come out to agree within errobars.

The situation changes when turning to the energy-weighted sum rule. Here the overall uncertainty
is dominated by the coupled-cluster truncation and it is estimated to be below 2%. Also in this case
�NLOGO(450) leads to a larger value for m1. However, due to the smooth convergence of this observable,
the difference between the two chiral orders, amounting to 3%, can be better appreciated than in the case
of the polarizability. At the moment it is possible only two compute two orders in the �EFT expansion,
namely the NLO and N2LO, therefore we refrain from using the algorithm of Eq. (6) in this case. Clearly,
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Dipole polarizability in 8He

Acharya et al., arXiv:2210.04632
Bonaiti et al., PRC (2022)

• Dipole polarizability from weighted sum rules

• Future extensions to deformed nuclei

Axially deformed coupled cluster!

Novario, Hagen, Papenbrock, Duguet, Tichai, … PRC (2021/22) 

~4% from 3p3h contributions
(interaction dependent!)
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• Heavier: controlled expansions beyond A=100

Progress in ab initio nuclear structure at various fronts

• Exotic: extensions to open-shell nuclei

Long-term goals: nuclear deformation/collectivity from first principles

Further advances not covered today

• Nuclear-matter calculations at finite T and arbitrary proton fraction

Conclusion and outlook

• Design of many-body emulators and machine-learning tools

• All interaction developments!

(Keller, Hebeler, Schwenk, …)

(Companys-Franzke, Tichai, Hebeler, Knöll, Roth, Schwenk, …)

• …
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Thank you for your attention!
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