(Light) Baryon phenomenology and partial-wave analyses - recent developments in Germany

KHuK annual meeting 2023, Bad Honnef

December 8, 2023 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich

Supported by DFG, NSFC, MKW NRW HPC support by Jülich Supercomputing Centre

Member of the Helmholtz Association

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Theoretical predictions of excited baryons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Major source of information:

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions (also: $\pi N \rightarrow \pi \pi N$)

Iarge data base, high quality (double) polarization observables (from ELSA, MAMI, JLab...) Reviews: Prog.Part.Nucl.Phys. 125, 103949 (2022), Prog.Part.Nucl.Phys. 111 (2020) 103752

In the future: electroproduction reactions

■ 10^5 data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012) Member of the Helmholtz Association Slide 116

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Theoretical predictions of excited baryons

... or lattice calculations: (with some limitations)

Major source of information:

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions (also: $\pi N \rightarrow \pi \pi N$)

Iarge data base, high quality (double) polarization observables (from ELSA, MAMI, JLab...) Reviews: Prog.Part.Nucl.Phys. 125, 103949 (2022), Prog.Part.Nucl.Phys. 111 (2020) 103752

In the future: electroproduction reactions

■ 10^5 data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012) Member of the Helmholtz Association

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

Theoretical predictions of excited baryons ... or Dyson-Schwinger approaches:

[Eichmann et al., Phys.Rev. D94 (2016), fig. from PoS LC2019 (2019) 003]

source: ELSA; data: ELSA, JLab, MAMI

Major source of information:

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions (also: $\pi N \rightarrow \pi \pi N$)

Iarge data base, high quality (double) polarization observables (from ELSA, MAMI, JLab...) Reviews: Prog.Part.Nucl.Phys. 125, 103949 (2022), Prog.Part.Nucl.Phys. 111 (2020) 103752

In the future: electroproduction reactions

10⁵ data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012) Member of the Helmholtz Association December 8, 2023 Slide 116

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

. . .

- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances MAID, Yerevan/JLab, KSU
- other groups: Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), JPAC (amplitude analysis with Regge phenomenology), Ghent (Regge-plus-resonance), truncated PWA

Detailed comparison of MAID, GWU/SAID, BnGa and JüBo: EPJ A 52, 284 (2016) Member of the Helmholtz Association December 8, 2023 Slide 216

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

. . .

- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances MAID, Yerevan/JLab, KSU
- other groups: Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), JPAC (amplitude analysis with Regge phenomenology), Ghent (Regge-plus-resonance), truncated PWA

Detailed comparison of MAID, GWU/SAID, BnGa and JüBo: EPJ A 52, 284 (2016) Member of the Helmholtz Association December 8, 2023 Slide 216

Recent results Bonn-Gatchina pwa.hiskp.uni-bonn.de

- **new photoproducion data are constantly included (e.g.** T, E, P, H, and G in $\gamma p \rightarrow \eta p$ (CBELSA/TAPS PLB 803 (2020)) \rightarrow BnGa2019 solution, new value for ηN residue of $N(1650)1/2^{-}$)
- photoproduction off neutrons: T, P, H for $\gamma p \rightarrow \pi^0 p, \eta p$ and $\gamma n \rightarrow \pi^0 n, \eta n$ (CBELSA/TAPS EPJ A 59 (2023))

Previously observed narrow structure in ηn at $W\sim$ 1.68 GeV:

- previously attributed to a new narrow $P_{11}(1680)$ (e.g. Witthauer *et al.* PRL 117 (2016))
- here: S₁₁(1535)-S₁₁(1650) interference (green solid),
- no need for $P_{11}(1680)$ (green dashed lines)

(Figs. from CBELSA/TAPS EPJ A 59 (2023))

 \rightarrow situation even for lower N^* not yet absolutely clear!

- Analysis of 3 body final states (with quasi 2-particle unitarity): study of sequential decays of high mass resonances via, e.g.,:
 - $\gamma p
 ightarrow \pi^0 \pi^0 p$ CBELSA/TAPS (2022) arXiv:2207.01981
 - $\pi^- p
 ightarrow \pi^+ \pi^ n, \pi^0 \pi^- p$ hades prc 102 (2020)

 \Rightarrow charged pions: ρN branching ratios of $N(1535)1/2^{-}$, $N(1520)3/2^{-}$ (pc lyknown scheme)

Recent results Jülich-Bonn-Washington

collaborations.fz-juelich.de/ikp/meson-baryon/main, jbw.phys.gwu.edu

extension to include $K\Sigma$ photoproduction off the proton:

D. Rönchen et al. ("JüBo2022") Eur.Phys.J.A 58 (2022) 229

- Simultaneous analysis of $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$ and $\gamma p \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$
- all 4-star N and Δ states up to J = 9/2 seen (exception: N(1895)1/2⁻) + some states with less stars
- indications for new dyn. gen. poles
- new value for ηN residue of $N(1650)1/2^-$
- = $\pi N \rightarrow \omega N$ channel included: Y.-F. Wang *et al.* PRD 106 (2022) prerequisite for ω photoproduction

extension of JBW approach to $K\Lambda$ electroproduction:

M. Mai et al. PRC 103 (2021), PRC 106 (2022), EPJ A 59 (2023)

- simultaneous fit to $\gamma^* p \rightarrow \pi N, \eta N, K\Lambda$ ($W < 1.8 \text{ GeV}, Q^2 < 8 \text{ GeV}^2$)
- Input from JüBo: amplitude at Q² = 0
 → universal pole positions and residues (fixed here)
- long-term goal: fit pion-, photo- & electron-induced
 reactions simultaneously
- study on compositeness/elementariness of resonances within JüBo DCC, spectral density function method Y.-F. Wang et al.

2307.06799 [nucl-th] Member of the Helmholtz Association

$$\gamma^* p \to K \Lambda$$
 at $W = 1.7 \text{ GeV}$

Further analyses efforts (selected examples)

Recent results Mainz-Tuzla-Zagreb:

- coupled channels analysis of η, η' photoproduction: "EtaMAID2018" (Tiator *et al.* EPJ A54 (2018) 210) evidence for N(1895)1/2⁻ (among other things)
- SE PWA of γp → π⁰p, π⁺n and γn → π⁻p, π⁰n Osmanovic *et al.* (PRC 104 (2021)) multipoles with min. model depend., constraints from unitarity & fixed-t analyticity
- Truncated partial-wave analysis (TPWA):
 - Single-channel SE PWA with "AA/PWA" aim: extraction of multipole in almost model indep. way (phase fixed to BnGa multipoles)
 - $\gamma p
 ightarrow \eta p$ (Svarc, Wunderlich, Tiator PRC 102 (2020))
 - $\begin{array}{l} -\gamma p \rightarrow K\Lambda \text{ (Svarc, Wunderlich, Tiator PRC 105 (2022)):} \\ \rightarrow \text{BnGa } M_{1-} \text{ reproduced,} \\ \text{ but } N(1880)1/2^{+} \text{ not confirmed} \end{array}$

figure from PRC 105 (2022)

 \rightarrow situation even for lower N^* not yet absolutely clear!

• TPWA of η photoproduction combined with Bayesian statistics (Kroenert *et al.* arXiv:2305.10367) guantify the uncertainty of multipole amplitudes with a high level of detail

Challenges and Perspectives

Extraction of the N^* and Δ spectrum from experimental data: major progress in last decade

- \blacksquare new information from photoproduction data \rightarrow new and upgraded states in PDG table
- γn reactions, multi meson final states: valuable information, data base is filling up
- wealth of high-quality electroproduction data, more at high Q^2 in the future (CLAS12)

ightarrow to be included in modern coupled-channel analyses (in progress)

Challenges:

- πN scattering: improved data situation highly desirable
- γN scattering: "complete experiment"
- thorough determination of uncertainties of resonance parameters:
 - error propagation data \rightarrow fit parameters \rightarrow derived quantities
 - model selection: significance of resonance signals with Bayesian evidence (PRL 108, 182002; PRC 86, 015212 (2012)) or LASSO (PRC 95, 015203 (2017); J. R. Stat. Soc. B 58, 267 (1996)

 \rightarrow need for refined analysis tools that match in precision the nowadays available data! (Huge numerical effort)

 Λ^* and Σ^* spectrum:

- rather poorly known (data situation)
- prospects for new data: K_L facility at JLab, planned experiment at ELSA, PANDA at FAIR

Thank you for your attention!

Appendix

The Hyperon Spectrum (Λ^* 's and Σ^* 's)

- Very little new experimental data in the last decades for the complete resonance region
- \rightarrow spectrum much less known than N^* or Δ but equally important to understand QCD at low energies!
 - 4 groups world-wide re-analyzed old *K*[−]*p* data over the complete resonance region
 - BnGa: multi-channel PWA based on a modified K-matrix approach EPJA 55,179 & 180 (2019)
 - JüBo: DCC analysis of $\overline{K}N$ reactions in progress

Prospects for new data:

- K_L facility at JLab: Strange Hadron Spectroscopy with a secondary K_L Beam at GlueX (approved) 2008.08215 [nucl-ex]
- In planned new experiment at ELSA in Bonn: $\gamma p \to K^+ \Lambda^* \to K^+ \Sigma^0 \pi^0$, $\gamma p \to K^+ \Sigma^* \to K^+ \Lambda \pi^0$
- PANDA at FAIR: $\bar{p}p \rightarrow \bar{Y}Y^*$: besides Ξ^* and Ω^* also Λ^* and Σ^* spectrum accessible 0903.3905 [hep-ex]

		Overall	Status as seen in —		
Particle	J^P	status	$N\overline{K}$	$\Sigma \pi$	Other channels
A(1116)	$1/2^+$	****			$N\pi$ (weak decay)
A(1380)	$1/2^{-}$	**	**	**	
A(1405)	$1/2^{-}$	****	****	****	
A(1520)	$3/2^{-}$	****	****	****	$\Lambda \pi \pi, \Lambda \gamma, \Sigma \pi \pi$
A(1600)	$1/2^{+}$	****	***	****	$\Lambda \pi \pi$, $\Sigma(1385)\pi$
A(1670)	$1/2^{-}$	****	****	****	$\Lambda \eta$
A(1690)	$3/2^{-}$	****	****	***	$A\pi\pi$, $\Sigma(1385)\pi$
A(1710)	$1/2^{+}$	*	*	*	
$\Lambda(1800)$	$1/2^{-}$	***	***	**	$\Lambda \pi \pi, N\overline{K}^*$
A(1810)	$1/2^{+}$	***	**	**	$N\overline{K}^*$
$\Lambda(1820)$	$5/2^{+}$	****	****	****	$\Sigma(1385)\pi$
A(1830)	$5/2^{-}$	****	****	****	$\Sigma(1385)\pi$
A(1890)	$3/2^{+}$	****	****	**	$\Sigma(1385)\pi, N\overline{K}^*$
A(2000)	$1/2^{-}$	*	*	*	
A(2050)	$3/2^{-}$	*	*	*	
A(2070)	$3/2^{+}$	*	*	*	
A(2080)	$5/2^{-}$	*	*	*	
A(2085)	$7/2^{+}$	**	**	*	
$\Lambda(2100)$	$7/2^{-}$	****	****	**	$N\overline{K}^*$
$\Lambda(2110)$	$5/2^{+}$	***	**	**	$N\overline{K}^*$
A(2325)	$3/2^{-}$	*	*		
A(2350)	$9/2^{+}$	***	***	*	
A(2585)		*	*		
R. L. Workman et al. (Particle Data Group), Prog. Theor.					

Quantum numbers undater

Exp. Phys. 2022, 083C01 (2022)

Status updated

JÜLICH Forschungszentrum

Jülich-Bonn-Washington parametrization

- simultaneous fit to πN , ηN , $K \Lambda$ electroproduction off proton ($W < 1.8 \text{ GeV}, Q^2 < 8 \text{ GeV}^2$)
- 533 fit parameters, 110.281 data points
- Input from JüBo: $V_{\mu\gamma}(k, W, Q^2 = 0)$, $T_{\mu\kappa}(k, p, W)$, $G_{\kappa}(p, W)$

 \rightarrow universal pole positions and residues (fixed in this study)

Iong-term goal: fit pion-, photo- and electron-induced reactions simultaneously Newhord the identity of the state of th

$$\gamma^* p \to K \Lambda$$
 at $W = 1.7 \text{ GeV}$

Different methods to extract the spectrum from data

Detailed comparison: EPJ A 52, 284 (2016)

Bonn-Gatchina (BnGa) PWA

(pwa.hiskp.uni-bonn.de)

Multi-channel PWA based on K-matrix (N/D)

- mostly phenomenological model
- resonances added by hand
- resonance parameters determined from large experimental data base: pion-, photon-induced reactions, 3-body final states
- PWA of KN scattering, hyperon spectrum EPJA 55,179 & 180 (2019)

Jülich-Bonn (JüBo) DCC model

(collaborations.fz-juelich.de/ikp/meson-baryon/main) Lippmann-Schwinger eq. formulated in TOPT

- hadronic potential from effective Lagrangians
- photoproduction as energy-dependent polynomials
- resonances as s-channel states ("by hand"), dynamical generation possible

MAID PWA

(maid.kph.uni-mainz.de)

unitary isobar model

- resonances as multi-channel Breit-Wigner amplitudes
- background: Born terms + Regge exchanges
- photo- and electroproduction of pions, etas & kaons
- Mainz-Tuzla-Zagreb collaboration: MAID + fixed-t dispersion relations, L+P (pwatuzla.com/p/mtz-collab.html)

- resonance parameters from pion- and photon-induced data
- Jülich-Bonn-Washington model: CC electroproduction analysis (jbw.phys.gwu.edu)

