

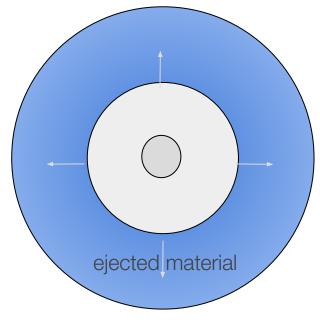

Electromagnetic Counterparts of Neutron Star Mergers: Signatures of Heavy r-Process Nucleosynthesis

Andreas Flörs GSI Darmstadt





Andreas Flörs

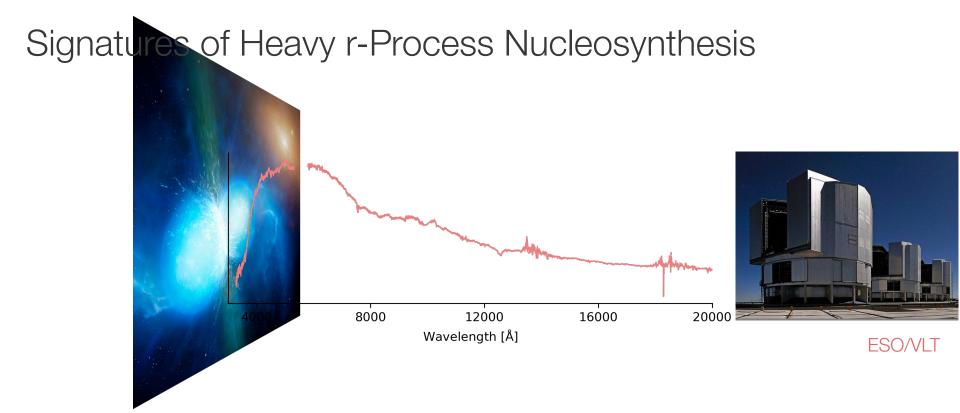





Andreas Flörs

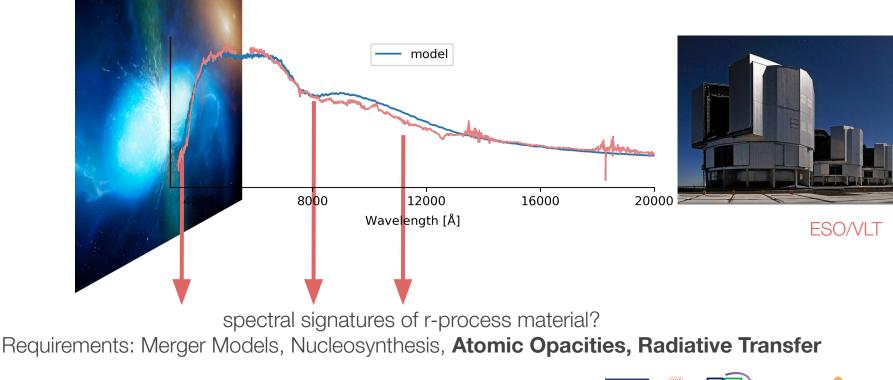
Physikzentrum Bad Honnef






Andreas Flörs

Physikzentrum Bad Honnef

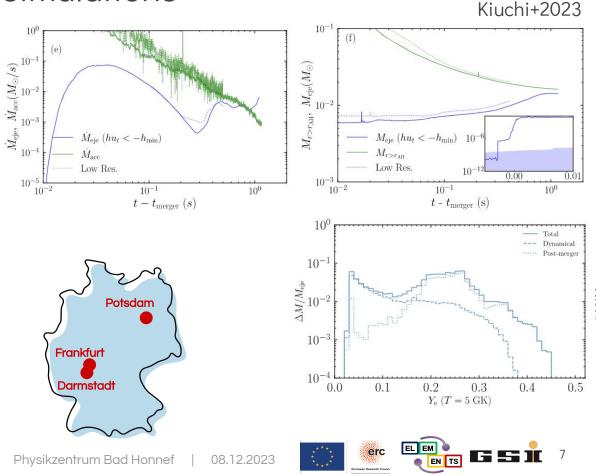







Andreas Flörs








#### Long-duration merger simulations

KHuK Annual Meeting

- Long duration merger models extremely important to obtain all ejecta components
- Homologous expansion?
- Timescale of dynamical ejecta
   ~few ms, for postmerger ejecta
   ~few s

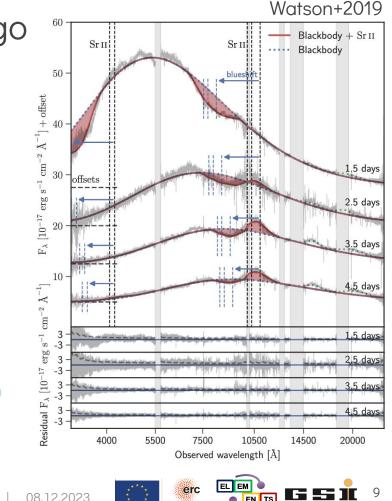


#### The atomic data landscape in 2022

- Only one complete atomic opacity database available (Tanaka+2019, Gaigalas+2020)
- Completeness over accuracy!
- NLTE atomic data for few species (Hotokezaka+2021)
- Several groups working on additional atomic opacity calculations: GSI, Jena

| Hydrogen                                               | 2<br>IIA                        | 4                                                                         |                  |                     | ble<br>ant le       |                        |                       |                 |                   |                  | Do                                       | ata                     | 14<br>IVA             | 15<br>VA             | 16<br>VIA             | 17<br>VIIA                    | <sup>18</sup><br>VIIIA<br><sup>2</sup><br>Helium<br>4002002 |
|--------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|------------------|---------------------|---------------------|------------------------|-----------------------|-----------------|-------------------|------------------|------------------------------------------|-------------------------|-----------------------|----------------------|-----------------------|-------------------------------|-------------------------------------------------------------|
| 3<br>Li<br>Lithium<br>6.94                             | 4 Be<br>Beryllium<br>Botzrast   | Most levels & transitions known Very incomplete levels & transitions data |                  |                     |                     |                        |                       |                 |                   |                  |                                          |                         | 6<br>Carbon<br>12.011 | 7<br>Nitrogen        | 8<br>Oxygen<br>15.999 | 9<br>Flucrine<br>18.995403163 | 10<br>Neon<br>201797                                        |
| 11<br>Na<br>Sodium<br>22.98939928                      | 12<br>Mg<br>Magnesium<br>24.305 | 3<br>IIIB                                                                 | 4<br>IVB         | 5<br>VB             | 6<br>VIB            | 7<br>VIIB              | 8<br>VIIIB            | 9<br>VIIIB      | 10<br>VIIIB       | 11<br>IB         | 12<br>IIB                                | Aluminium<br>26.0815365 | Silicon               | Phosphorus           | IS<br>Sultur          | 17 Cl<br>Chlorine<br>3545     | Argon<br>Argon                                              |
| Petassium                                              | Calcium                         | Scendium                                                                  | Tianium          | <sup>23</sup> V     | <sup>24</sup> Cr    | Mn                     | Fe                    | Co              | ²⁵Ni              | Cu               | <sup>®</sup> Zn                          | Ga                      | Ge                    | Ås                   | ืSe                   | <sup>®</sup> Br               | ۳Кr                                                         |
|                                                        | 40.078                          | 44,955908                                                                 | 47.867           | Vanadium<br>50.5415 | Chromium<br>51,9961 | Manganese<br>54,938044 | 1ron<br>55,845        | Cobalt          | Nickel<br>58,6934 | Copper<br>63.545 | Zino                                     | Gallium<br>69.723       | Germanium<br>72.630   | Arsenic<br>74.921595 | Selenium<br>78.971    | Bromine<br>79.904             | Krypton<br>83.798                                           |
| 37<br>Rb<br>Rubidium                                   | 38<br>Strontium                 | 44.955908<br>39<br>Yttrium                                                | 40<br>Zirconium  | Nobium              | 42<br>Molybdenum    | 43<br>TC<br>Technetium | 44<br>Ru<br>Buthenium |                 | 46<br>Palladium   |                  | Zinc<br>6538<br>48<br>Cadmium<br>Cadmium |                         | 50<br>Sn<br>Tin       |                      |                       |                               | 54<br>Xenon                                                 |
| 37<br>Rb<br>Rubidium<br>85:4678<br>55<br>CS<br>Caesium | ຶSr                             | <sup>39</sup> Y                                                           | <sup>40</sup> Zr | Nb                  | Мо                  |                        |                       | <sup>*</sup> Rh | Pd                | Âg               | Cd                                       | 49<br>In<br>Indium      | 50<br>Sn              | 51 <b>Sb</b>         | 52<br>Te              | 53                            | <sup>54</sup> Xe                                            |







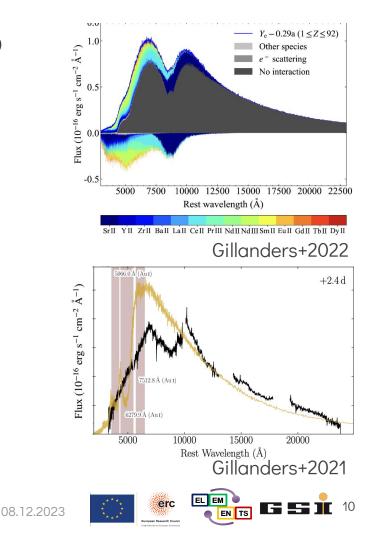

#### The State of the Field Two Years Ago

#### Radiative Transfer & Spectral Signatures

- Spectra are explained with blackbody emission
- Additional features visible at various KN epochs
- Identification of a single element strontium (Watson+2019)
- Where are the heavy r-process elements?
- Incomplete atomic data



Darmstadt

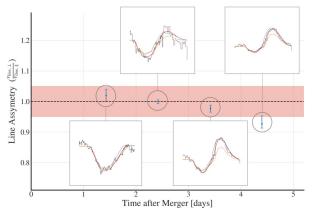

Heidelberg

#### The State of the Field Two Years Ago

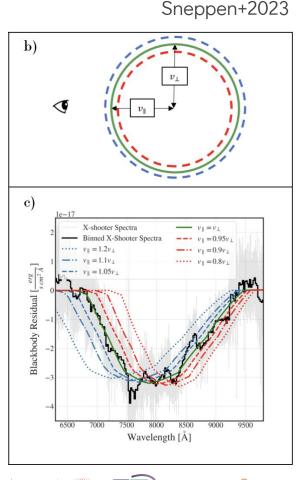
Radiative Transfer & Spectral Signatures

- Exploration of signatures of heavy elements:
   Pt, Au, Ba, Lanthanides
- Blackbody + few P-Cygni features places strong constraints on the presence of heavy r-process material
- But: Many simplifications and Approximations are used to derive these results!





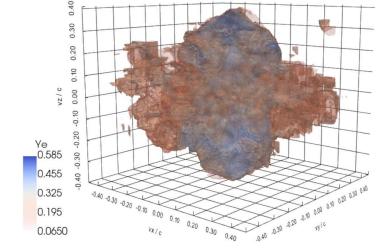

### Kilonova Geometry


A Spherical Kilonova?

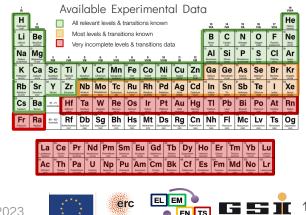
- Radial velocity from line position
- Tangential velocity from emitting area
- Both velocities agree extremely well
  - ightarrow AT2017gfo was highly spherical
- Difficult for theory
  - $\rightarrow$  merger geometry is

axis-symmetric







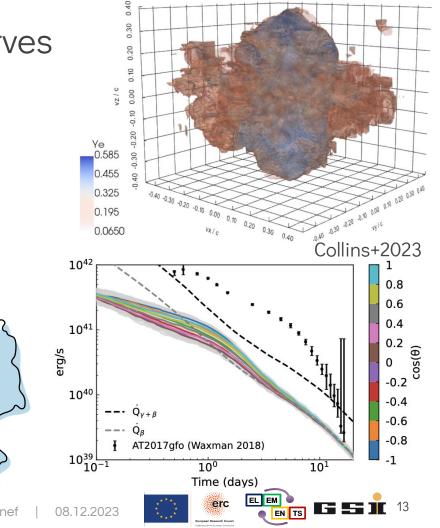


Physikzentrum Bad Honnef

#### Ways to move forward

- Calibrated transition data for lanthanides
- Use merger models instead of analytical description
- Take decay energy deposition rate into account
- 2D/3D radiative transfer
- □ Line-by-line opacity



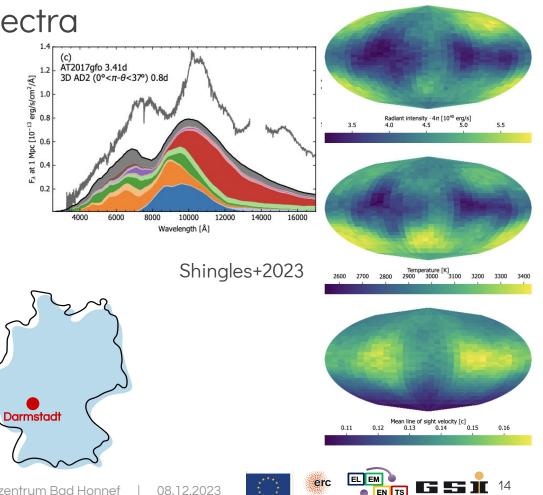
#### Collins+2023






Physikzentrum Bad Honnef

#### 3D Radiative Transfer: Light Curves


- □ Neutron Star Mergers are a 3D phenomenon!
- But why do 1D models yield such good fits?
- Collins+2023: First 3D radiative transfer simulation from hydrodynamical merger model
- Still uses wavelength independent opacities
- $\square merger simulations \rightarrow nuclear network$  $calculation \rightarrow 3D radiative transfer$
- Consistent connection between theory and observations:
   Ejected mass, velocity structure, r-process pattern



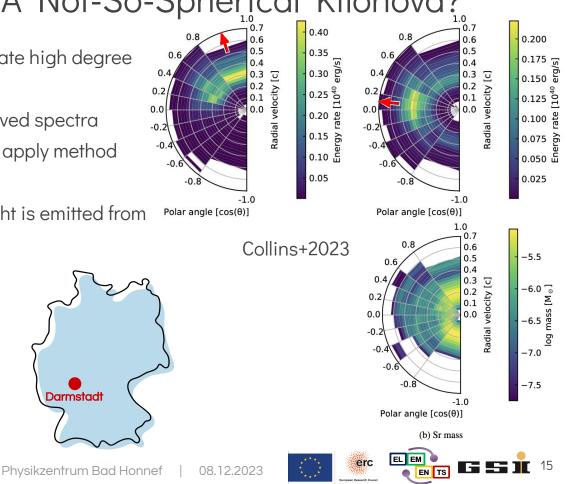
Darmstadt

### 3D Radiative Transfer: Spectra

- Most self-consistent radiative transfer simulation
- Includes time-dependence, hydrodynamical merger model, nuclear decay network, 3D RT, detailed thermalisation treatment, line-by-line opacity
- Contribution of Sr. Zr. Y. Ce as inferred from 1D, but probably not the full picture
- Spectra extremely different between spherically averaged 1D and full 3D models



Physikzentrum Bad Honnef

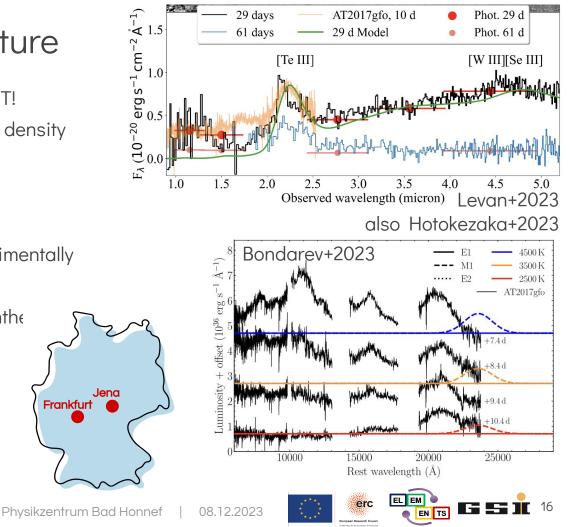

#### 3D Radiative Transfer: A Not-So-Spherical Kilonova?

Darmstadt

- 1D models of observed spectra indicate high degree of sphericity
- Difficult to verify method using observed spectra
- Use 3D spectra from Shingles+2023, apply method from Sneppen+2023
- Radiation observed in any line of sight is emitted from a broad region

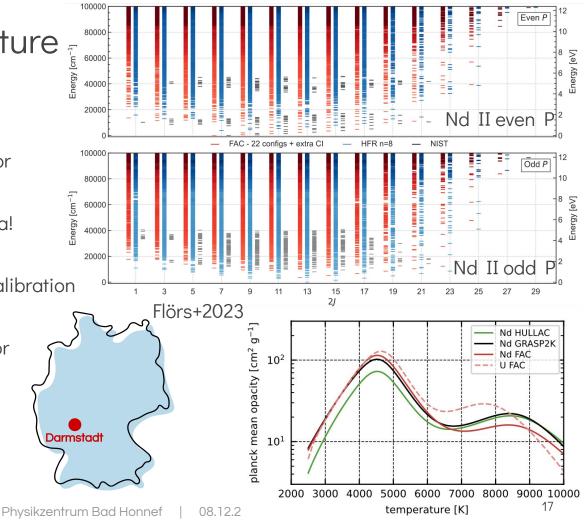
KHuK Annual Meetina

- $\rightarrow$  decreases anisotropies
- $\rightarrow$  apparent sphericity
- Sphericity of radiation ≠ sphericity of ejecta



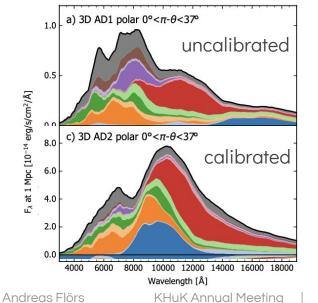

#### **R-Process Atomic Structure**

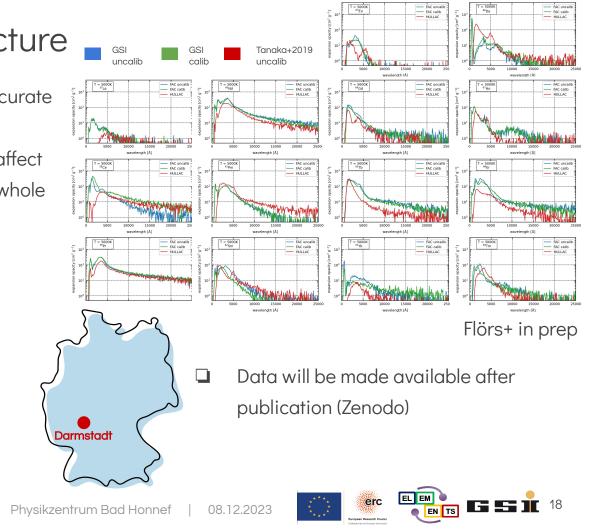
- The first observed kilonova with JWST!
- Nebular spectroscopy: extremely low density (10<sup>6</sup> cm<sup>-3</sup>), low velocity
  - $\rightarrow$  easier identification of features
- Mid-IR forbidden transitions
  - → requires accurate data, not experimentally accessible


KHuK Annual Meeting

New window for r-process nucleosynthe fingerprints

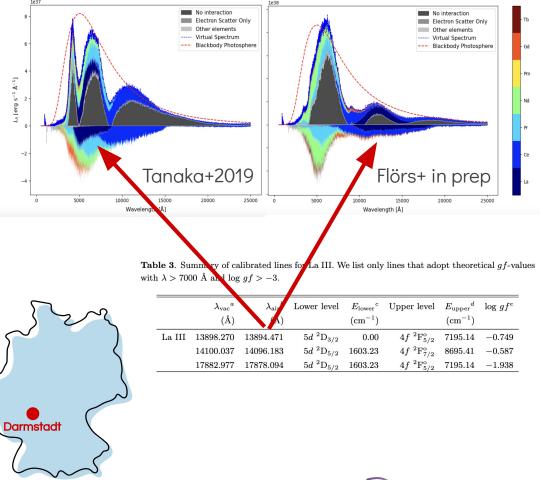



# R-Process Atomic Structure


- Radiative transfer heavily relies on high-quality atomic data
- Atomic data for lanthanide sparse, for actinides not available
- □ We need complete *and* accurate data!
- Nd & U as test cases: importance of obtaining all relevant transitions & calibration to experimental data
- Computationally feasible to repeat for all lanthanides!



#### **R-Process Atomic Structure**


- All lanthanides are important for accurate radiative transfer modeling
- Inaccurate data from few ions can affect the radiative transfer solution as a whole



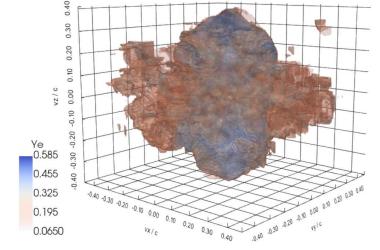


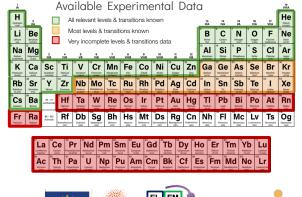
#### **R-Process Atomic Structur**

- Accuracy benchmark: La III infrared transitions
- Currently available dataset: wavelengths inaccurate, 500nm vs 1500nm
- GSI calibrated atomic data: test case accuracy ~20%






#### Outlook


- Many improvements in the last year!
- □ (Hopefully) many more mergers with LIGO/VIRGO
- Complete modeling pipeline:

Merger models  $\rightarrow$  r-process  $\rightarrow$  radiative transfer

- Explore the merger landscape diverse group
- NLTE radiative transfer
  - $\rightarrow$  challenging but rewarding
- Actinide atomic data
- NLTE atomic data (collisional excitation, photoionisation, recombination)







Physikzentrum Bad Honnef

