

The Layout of the Straw Tube Tracker

Peter Wintz, IKP-FZ Jülich

EVO Meeting, Oct-20, 2011

The PANDA Spectrometer

Central Straw Tube Tracker

- 4636 Straw tubes in 2 semi-barrels
 - Al-Mylar film, d=27µm, *Ø*=10mm, L=1500mm
- 23-27 planar layers in 6 hexagonal sectors
 - 15-19 axial layers (green) in beam direction
 - 4 stereo double-layers, skew angle ±3° (blue/red)
- Time readout (isochrone radius)
- Amplitude readout (energy loss)
- σ_{rφ}< 150 μm, σ_z< 2.8 mm (single hit)
- $\sigma_E / E < 8\%$ (p/K, π / K separation)
- σ_p/p ~ 3% (at B=2T, STT alone)
- $X/X_0 \sim 1.2\%$ (²/₃ tube wall + ¹/₃ gas)

STT dimensions

- R_{in}/R_{out}= 150/420 mm (160/410mm active)
- L= 1650mm incl. backward FEE (150mm)

Peter Wintz

EVO Meeting, Oct-20, 2011

STT Geometry

Helix reconstruction

- axial layers
 - helix circle in $r\phi$ -plane, **up to 19 hits**
 - 1st step of track pattern recognition
 - sectors with close-packed planar layers, straw distance: $\Delta x=10.1$ mm, $\Delta y=8.75$ mm

stereo layers

- helix slope in sz-plane, up to 8 hits
- skew angle ±3° relative to axial sector layers
- 2nd step of PR: associate skewed hits to found circle in rφ-plane

Iow material budget inside STT

- X/X₀ ~ 1.2% in radial direction
- neglect MS, ΔE for (online) tracking
- curling tracks
 - p_{tr} ~ 50 .. 130 MeV/c with 2R ~ 16 .. 42cm at B=2T

STT Readout Information

- Readout information:
 - straw channel number: i, i = 0..4636
 - signal time: t_{hit}
 - signal amplitude (width): A_{hit} (Δt_{hit})
- Signal times t_{hit} for tracking
 - triggerless readout: $t_{hit} = t_0^{evt} + t_{drift}$ $(+t_{offs} + \Delta t_{\Delta L} + \Delta t_{tof})$
 - need drift times t_{drift} for isochrones: r_{iso}(t_{dr})
 - event time determination necessary: t_{drift} = t_{hit} t₀^{evt}
 - no data bursts at event rate ~ 2×10⁷ /s
 - event mixing $<\Delta t_0^{evt} > ~ 50ns$ (average, but poissonian)
 - drift time range t_{drift} = 0..200ns
 - time frame: ±200ns with ~ 8 events, ~ 30 complete/incomplete tracks

Track Pattern Recognition

Two methods

- 1. STT alone
 - define start hit, time t_{hit} in inner STT region
 - find hits within t_{hit} ±200ns drift time window
 - associate all hits belonging to one track (track road, ..)
 - only coarse straw information: no isochrones, only wire positions, ~mm resol.
 - event time (t₀^{evt}) determination from STT hits and/or assoc. SciTil hits
 - isochrone information available for high resolution tracking
- 2. SciTil times as reference
 - data burst (≥ 2 hits) in SciTil defines event occurence and time (t^{evt})
 - match STT (outer) hits to SciTil hits
 - match STT hit times (const. time offset), drift times available
 - pattern recognition can be based on isochrones

T0 Determination Method

- STT standalone reconstruction method (idea)
- Pattern recognition in rφ-plane using straws as pads
 - Find hit cluster in STT, identify all hits within ±200ns
 - Calculate track circle in rφ-plane based on
 - $2 \times Midpoints of straw triplets: (x_m, y_m) = 1/3 \times \Sigma (x_i, y_i)^{wire}$
 - *IP point (0,0)*
 - Associate all hits belonging to one track road
- Calculate time t₀ using the inverse isochrone relation: t(r_{iso})
 - Compute expected drift times: $t_{guess} (r_{iso}) = \Sigma P_i \times r_{iso}^{i}$
 - Compare with hit times: $t_0 = \Sigma (t_{hit} t_{guess}) / N_{hits}$
 - t₀ resolution of ~ 5ns (σ) for 1000 simulated tracks
 - Trackfit to isochrones with t₀-corrected drift times: t_{drift} = t_{hit} t₀
 - Recalculate t₀
 - t₀ resolution of 1.8ns (σ) already for single tracks

Peter Wintz

EVO Meeting, Oct-20, 2011

Some Examples

Tracking without isochrones

- Straw triplet-cluster hits: $(x_m, y_m) = 1/3 \times \Sigma (x_i, y_i)^{wire}$
- black (small) circles, with ~ mm precision
- track circles in plots:
 - blue = true track
 - black = to triplet hits
 - red = fit to isochrones

EVO Meeting, Oct-20, 2011

Peter Wintz