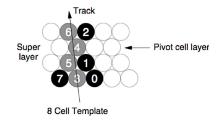
Survey of Online Tracking Algorithms

Sean Dobbs, A. Tomaradze

(Northwestern University)

M. Mertens

(Forschungszentrum Jülich GmbH)


- Efficient online tracking algorithms are essential for triggering on physics events.
- Marius asked us to survey the algorithms used by other experiments as a starting point for STT online tracking.
- Our search concentrated on experiments
 - that ran in the past decade,
 - had cylindrically symmetric geometry (e.g. not LHCb)
 - had wire chamber-like main tracking system
- Caveat: Details were not always easy to find or compare between different experiments, and often changed during the course of the experiment.

Tracking Algorithms

- Generally, there were two categories of track finding algorithms:
 - "local" ': track/road following, Kalman filter, etc.
 - "global": Hough transform, Histogramming, etc.
- Three different levels of triggers are seen:
 - Level 1: fast track finding with specialized hardware (FPGAs)
 - Level 2: fast readout hardware for simplified reconstruction algorithms running on commodity hardware
 - Level 3: offline-quality reconstruction, with simplified calibrations and/or geometry
- Improvements in processor and network speed have lead to move away from L2 triggers and towards smarter L1 triggers with full event reconstruction in L3.
- N.B.: Algorithms are highly optimized for their specific detectors.

Template Matching

- Find track segments ("tracklets") in subset of detector ("superlayer") using large, fast associative memory banks in modern FPGAs
- Patterns based on realistic tracks, allowing for the possibility of missing hits. Can include patterns from tracks with displaced vertices.

• Example: BaBar matches eight-cell patterns that "pivot" around cell 4, with hits required in either four or three layers.

- Start with initial track segment on inside or outside of detector
- Build track by extrapolating from initial segment, adding hits along predicted path
- Example: BaBar starts with track segments from inner superlayer, and builds outwards allowing one or two (in certain circumstances) superlayers to be missing.

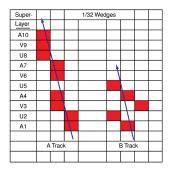


Figure 3: Track Linker Algorithm: two example tracks. The long track on the left side shows a segment hit pattern for an "A" track for which the segment hit corresponding to superlayer US is missing. The short track on the right side illustrates the stereo-wire rotation effect of a track with significant inclination, a track that is far from normal to the z-axis.

Experiment Parameters

	event rate	trigger rate (L1/(L2)/L3)	avg. track multi.	layers	cell size (mm)	trigger efficiency
e^+e^- Experiments						
CLEO III BaBar Belle BES–III	250kHz 2kHz 5kHz ~3kHz	< 1kHz/130Hz 970Hz/120Hz 500Hz/500Hz > 4kHz/1kHz	$\sim 8 \ (B\overline{B})$ 2 (e^+e^-) ~ 4	47 40 50 43	$7 \\ 6 - 8 \\ 8 - 10 \\ 6 - 8$	$\sim 99\% \ \sim 94\% \ > 90\% \ \sim 99\%$
<i>ep</i> Experi	ments					
ZEUS H1	$\sim\!1\text{MHz}$	600Hz/100Hz/20Hz 1kHz/200Hz/50Hz/~5Hz	~ 10	72 56	$^{\sim25}_{23-43}$	\sim 70 $-$ 90%
$pp + p\bar{p}$ Experiments						
CDF DØ	7.5MHz	30kHz/750Hz/75Hz 10kHz/1.5kHz/50Hz	~ 35	96 32	8.8 0.4	$96\%\ \sim 95\%$
CMS ATLAS	\leq 40MHz	100kHz/100Hz 100kHz/2kHz/200Hz	> 100	$\begin{array}{c} \sim 12 \\ 36 \end{array}$	2	85–98% > 90%
PANDA	~20MHz		$\sim4\!-\!6$	24	5	

L1 Track Finding Algorithms

CLEO	templates for 16 axial layers, 8 stereo 4–layer superlayers
	stereo track "roads" matched, correlated to axial tracks
BaBar	$r-\phi$: tracklets found using templates for 8–cell groups
	in 4–layer superlayers, track following using 32 ϕ and 10 radial sectors
	z: Hough transform using 8 ϕ and 10 radial bins, followed by 2 χ^2 fits
Belle	$r-\phi$: tracklets found using templates for 5/6–layer superlayers
	track following using 64 wedges in ϕ and 6 radial sectors
	z: templates using 4 superlayers and 3 cathode layers in 8 ϕ sectors
BES-III	BaBar–style tracklet finding
	+ track following in 4 superlayers (3 inner 1 outer)

+ track following in 4 superlayers (3 inner, 1 outer)

L1 Track Finding Algorithms

CDF	tracklet finding in 4 axial 12–layer superlayers,		
	road finding in 288 $\phi-$ slices, both with templates		
DØ	templates for 8 double layers in 80 $\phi-$ slices		

ZEUS templates for 3 axial 8–layer superlayers

H1 L1: tracklet finding in 4 3–layer superlayers, histogram track finder L2: finer histogram + χ^2 fit

CMS & No hardware–based track finding ATLAS

CLEO	axial: 32 Xilinx 5202, 16 Altera 7084
	stereo: 60 Altera 8820, 60 Altera 7128
BaBar	Xilinx Virtex 2: 72 axial, 48 stereo
Belle	1024 track segment finder, 64 track finder (Xilinx?)
BES III	Xilinx Virtex 2

CDFAltera Flex 10k: 336 Track Finder, 288 Track LinkerDØ160 Xilinx Virtex 2

Online Algorithms

	detector	algorithm
CLEO	DR	L1: lookup table (full inner + four-layer outer) + road following
		L3: 2D χ^2 circle fit
BaBar	DR	L1: four–layer tracklet finding $+$ road following
		L3: lookup table + fast Kalman fit
Belle	DR	L1: $5/6$ -layer tracklet lookup table + combinatorial wedge finder
		L3: conformal transform χ^2 fit
BES-III	DR	L1: 4–layer tracklet lookup $+$ road following
		L3: Kalman fit
ZEUS	DR	L1: tracklet finding/matching in $r - \phi$ and $z - r$
		L2: Road following $+ r - \phi \chi^2$ circle fit $+ z$ info
		L3: Kalman fit
H1	DR	L1: tracklet finding/matching in $4 imes 3$ axial layers
		L2: 2D χ^2 circle fit in $r - \phi$ and $r - z$
		L3: none
		L4: Kalman fit?

DR: Drift Chamber

Online Algorithms

CDF	DR	L1: 4 layer tracklet lookup + road finding in axial superlayers
		L2: add in stereo hits near axial tracks, simple χ^2 fit
		L3: Histogram & Kalman
DØ	Fiber	L1: lookup table (8 axial double–layers)
		L2: simple χ^2 fit, classification
		L3: road following (Kalman–like), silicon+fiber
CMS	Silicon	L1: none
		L3: Kalman + DAF (tracks/vertex) + GSF (electrons)
ATLAS	Straw tubes	L1: none – "Regions of Interest" are passed on
		L2: Kalman filter with seeding from silicon
		L3: Inside–out (road following $+$ DAF),
		followed by outside–in (Hough trans. $+$ Kalman)

In each of these four cases, the L3 algorithms were the same as the offline reconstruction.

- DAF: Deterministic Annealing Filter, sort of probabilistic Kalman filter, said to be good for high occupancies
- GSF: Gaussian Sum Filter, said to be good for particles with non–Gaussian energy loss

Summary

- L1: Hardware-based combinatorial pattern matching, using powerful modern FPGAs.
- L3: Offline-quality track fitting (e.g. BaBar's fast Kalman or DAF)
- BaBar & ATLAS have similar geometries to PANDA STT, so they could be a good starting place.
 BaBar/BES-III's track finding algorithm said to handle curling tracks well, but requires z-information for them.
- Displaced vertices are generally handled well, though dealing with decays inside the STT take more planning.
- L1 trigger decision sensitive to beam-generated backgrounds.
- Kalman-type filters can handle track finding, fitting, vertexing, all in one algorithm.
- Lots of room to optimize algorithms!