

Aging studies and resulting design change considerations for MRPC1

CBM – TOF requirements

CBM-ToF Requirements

- > Full system time resolution $\sigma_{_{\rm T}} \sim 80 \text{ ps}$
- Efficiency > 95%
- ▶ Rate capability \leq 30 kHz/cm²
- Polar angular range 2.5° 25°
- Active area of 120 m²
- ➢ Occupancy < 5%</p>
- Low power electronics (~120.000 channels)
- Free streaming data acquisition
 CBM Collaboration, "CBM TOF Technical Desing Report", October 2014

URQMD simulated charged particle flux from Au + Au events for an interaction rate of 10 MHz

Detectors with different rate capabilities are needed as a function of polar angle

Our R&D activity addresses the CBM-TOF inner wall:

- highest counting rate
- highest granularity
- ~15 m^2 active area

Prototype architecture

32 strips Readout electrode: 9.02 mm pitch= 1.27 mm w + 7.75 mm g High Voltage electrode: 9.02 mm pitch= 7.37 mm w + 1.65mm g

- ✓ Symmetric two stack structure: 2 x 5 gaps
- ✓ Active area 60/100/200 x 300 mm²
- \checkmark Gas gap thickness: 140 μ m / 200 μ m
- ✓ Strip structure for Readout & HV electrodes
- ✓ Differential readout
- ✓ Resistive electrodes: Chinese glass

Input/Output signals are simulated using APLAC \sim 97 Ω transmission line impedance

Efficiency for MSMGRPCs with 140 µm gap size and triggered/free streaming DAQ systems

At the CBM Meeting (Kolkata, September 2019) we agreed to:

- assemble two new prototypes with 200 µm gap size, based on Chinese glass,

in order to increase the signal size at the input of PADI FEE for better efficiency;

MSMGRPC prototypes with 200 µm gas gap size – RPC2019

Spacer distribution across the surface

Counters ready to be closed in the housing box

2 counters mounted on the back panel

Mounting the housing box

CBM-TOF weekly meeting, 08.01.2020

Experimental setup for cosmic rays & ⁶⁰Co tests

Typical signals

for each RPC:

- 16 operated strips, readout at both ends
- (16 x 0.902 cm) x 6 cm = 86.6 cm² operated area
- NINO FEE, Threshold = 145 mV
- Plastic size = 1.5 cm x 1.5 cm x 10 cm
- Gas mixture: $90\%C_2H_2F_4 + 5\%SF_6 + 5\%iso-C_4H_{10}$

RPC2019 (Chinese glass)	$\mathbf{I}_{_{\mathrm{dark}}}$	Dark rate
RPC1	< 1 nA	0.11 Hz/cm ²
RPC2	< 1 nA	0. 14 Hz/cm ²

2D mapping in self-trigger mode using ⁶⁰Co source

Y position (channels)

Collimator for edge scanning with ⁶⁰Co source

Cosmic rays tests in HPD/IFIN-HH Bucharest NINO FEE + CAEN TDC

Cosmic rays tests in PI/UNI Heidelberg PADI X/XI + GET4

Efficiency Bucharest counter			
Gap 140 μm	Gap 200 μm		
81 %	93 %		
91 %	98 %		
	Efficiency Bucharest c Gap 140 μm 81 % 91 %		

2021 mCBM@SIS18 beam time – test counters in mTOF

Ingo, 25th mCBM beam time meeting, 07.06.2021

High voltage scan & Th =200 mV

Mariana Petris, MRPC design change review meeting, 23rd November 2021

Efficiency & time resolution @ counting rate (@ +/- 6kV, Th=200 mV)

Efficiency & time resolution @ counting rate (@ +/- 6kV, Th=200 mV)

Ageing investigations

$90\%C_{2}H_{2}F_{4}+5\%SF_{6}+5\%iso-C_{4}H_{10}$

- IRASM/IFIN-HH multipurpose irradiation center
 ⁶⁰Co source activity: 360 kCi

	Table 1:					
Date	Gas flow	Duration	Ι	$\langle Q \rangle$	Doze rate	Cumulated
(dd/mm)	(l/h)	(hours)	(μA)	(C)	(kGy/h)	dose (kGy)
10.11	4	3:45	105	1.4175	0.3267	1.225
11.11	4	2:30	125	1.125	0.3267	2.096
12.11	4	3:00	106	1.1448	0.3267	3.076
13.11	4	3:00	168	1.8144	0.3267	4.056
16.11	4	3:20	289	3.468	0.3222	5.130
17.11	4	3:30	363	4.5738	0.3222	6.258
18.11	8	6:35	254	6.0198	0.3222	8.379
20.11	4	4:00	397	5.7168	0.3145	9.637
23.11	4	3:10	233	2.6562	0.3145	10.633
23.11	8	3:00	288	3.1104	0.3145	11.577
24.11	8	4:30	246	3.990	0.3145	12.992
	Total	40:33	(35.0367	\sum	12.992

Accumulated charge by the exposed MSMGRPC: 35.0367 C / 276.5 cm² = 0.1266 C/cm² = 127 mC/cm²

Accumulated charge in CBM in 1 month of running at the highest interaction rate: 10^7 int/s x $0.6x10^{-2}$ hits/cm²/event x $4.6x10^{-12}$ C x $2.592x10^6$ s = 0.7154 C/cm²/month

Ageing investigations

Maximum equivalent particle flux = 310 kHz/cm^2

Counter recovery after the end of the exposure

After flushing the counter with fresh working gas for two weeks:

- dark current and dark rate reached almost the same values as before the irradiation
- efficiency and cluster size are wa not significantly affected.

Analysis of the chemical composition of the deposited layers

XPS - analysis

RBS – analysis: overlapped ¹²C- ⁴He resonance spectra for a non-irradiated glass plate and the cathode and anode surfaces of an irradiated one

Ageing investigations

enhanced activity in the adjacent strips, (left-right,) to the spacers positioned in between them

Probe	$R_V (G\Omega \cdot cm)$	$R_S (G\Omega / \Box)$
irradiated		
cathode surface	67.4	20.0
irradiated anode		
surface	61.5	21.1
non-irradiated glass	65.2	20.2

Resistivity measurements

First prototype with a directed flow - design consideration and assembling -

6npo 6um

- Directed gas flow through the gas gaps.
- 5.6 cm strip length instead of 6 cm (previous ones).
- Spacers run across the strips, not along the strips, as for previous counters.
- Spacers positioned outside the electric field area.

HV conditioning & first signals

First prototype with a directed flow

July mCBM@SIS18 beam - test→preliminary results

 $601a \rightarrow gas$ exchange via diffusion $601b \rightarrow direct gas$ flow through the gaps $601b \rightarrow operated only up to 2 x 5.9 kV$

Analysis is in progress

Current design of the CBM-TOF inner wall

- 4 module types
- 12 modules
- 2 counter types: 100/200 x 300 mm²
- 300 counters
- 19,200 readout channels

	RPCs (200)	RPCs (100)	Total
No. RPCs	168	132	300
No. channels	10752	8448	19200

- For the 100 mm width counter a spacer will be positioned in the middle of the active area, while for the 200 mm width counter two spacers will be positioned in the active area.

- Technological solutions for a directed gas flow in the 100/200 mm wide MSMGRPCs will be developed in the near future based on the gained experience.

Summary & Outlook

- Two MSMGRPC prototypes with 200 um gas gap were assembled and successful tested (⁶⁰Co source & cosmics rays) in HPD/IFIN-HH (Bucharest) with NINO +CAEN TDCs readout, proving very good efficiency and time resolution.
- Similar results have been obtained in the cosmic ray tests in PI Heidelberg using PADI XI +GET4 TDCs .
- These prototypes were successfully tested in mCBM (including high counting rates), equipped with the readout electronics developed for the inner wall (PADI XI + GET4 mounted on the same motherboad).
 They demonstated a very good performance in terms of efficiency and time resolution up to a counting rate ≥ 25 kHz/cm².
- Aeging tests showed an important effect of gas polution. Proposed mittigation solutions is a MSMGRPC prototype with a directedd flow through the gaps. It was assembled and tested in the mCBM/SIS18 setup.
- Analysis of the data obtained in July mCBM beam time is in progress, showing promising preliminary results.
- Technological solutions for a directed gas flow in the 100/200 mm wide MSMGRPCs will be developed in the near future based on the already gained experience.

Current design of the CBM-TOF inner wall

- 4 module types
- 12 modules
- 2 counter types: 100/200 x 300 mm²
- 300 counters
- 19,200 readout channels

	RPCs (200)	RPCs (100)	Total
No. RPCs	168	132	300
No. channels	10752	8448	19200

- For the 100 mm width counter a spacer will be positioned in the middle of the active area, while for the 200 mm width counter two spacers will be positioned in the active area.

- Technological solutions for a directed gas flow in the 100/200 mm wide MSMGRPCs will be developed in the near future based on the gained experience.

Threshold scan

Run 1454: 200 mV, 2 x 6 kV

Run 1482: 150 mV, 2 x 6 kV

