

Contribution ID: 8

Type: not specified

Single particle levels in Sn-131 and Sn-133 on the path of r-process nucleosynthesis

Saturday, 4 August 2012 16:30 (30 minutes)

Single-particle resonant states embedded in the continuum for 131,133 Sn, in the vicinity of the neutron capture threshold for 130,132 Sn(n, γ), are calculated by the analytical continuation of the coupling constant (ACCC) approach within the relativistic mean field (RMF) theory framework. Our fully self-consistent RMF calculations using the NL3 effective interaction,

predict single-particle bound levels near the Fermi surface, consistent with Nature report for ¹³³Sn and recent measurement for ¹³¹Sn. For the first time, the level structure of single-particle resonant states in ^{131,133}Sn up to $3 \sim 4$ MeV above the neutron capture threshold are investigated. Our RMF+ACCC+BCS approach determines a level spacing that is too sparse for typical level density formulation used to calculate capture cross section with a Hauser-Feshbach (HF) formalism.

Primary author: Dr ZHANG, Shi-Sheng (School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China)

Co-author: Dr SMITH, Michael (Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6354 USA)

Presenter: Dr ZHANG, Shi-Sheng (School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China)

Session Classification: Simulations & Theory