The Rare Earth Peak: An Overlooked *r*-Process Diagnostic

Saturday August 4th 2012

NIC XII r-Process Workshop

NCSU Astrophysics

r-Process Data

Solar r-process residuals (meteoritic data) Halo stars (observational data)

Isotopic abundances

Elemental abundances

Importance Of The Rare Earth Region

- Peak forms away from closed shells
- Thus, by a different mechanism than A=130, A=195 peaks
- Region forms at late times (low R) during the *r*-process
- Thus, sensitive to **nuclear physics inputs**
- And, thermodynamic conditions

A Simple *r*-Process Calculation

nuclear physics inputs

(Sn, β -rates, n-cap rates, ...)

Environment conditions

(temperature, density, ...)

The r-Process Path

"Set of most abundant isotopes"

- 1. Understand nuclear flow
- 2. Relevant nuclear physics sets the path
- 3. Another way of looking at abundances

Understanding Solar Abundance Features

How do the "peaks" form? (A=80, A=130, A=195)

What about the Rare Earth Peak? (A~160)

Rare Earth Peak Formation

Some example calculations...

How Does The Rare Earth Peak Form? By Two Different Mechanisms

Hot Evolution

- T~1GK $(Z, N) + n \not \approx (Z, N + 1) + \gamma$
- T and p decline relatively slowly
- Reaction Channels: Neutron capture* Photo-dissociation* β-decay
- Peak forms by "funneling" mechanism

Cold Evolution

- T<1GK $(Z, N) + n \not \approx (Z, N + 1) + \gamma$
- T and p decline relatively quickly
- Reaction Channels: Neutron capture* β-decay* β-delayed neutron emission
- Peak forms by "trapping" mechanism

Mechanism discovered by Surman + Engel (1997)

Successful Rare Earth Peak Formation

Nuclei Important For Peak Formation?

Those nuclei 10-15 neutrons from stability...

A New Way To Constrain r-Process Conditions

- Use successful rare earth peak formation to constrain conditions favorable for the r-process
- Perform many simulations each with differing conditions
- Compare final pattern to both solar and halo star data

Isotopic abundances

Elemental abundances

Density Parameterization

- Similar to ν-driven wind parameterization by Meyer (2002) with...
- $3\tau = \tau_{dyn}$ and $\rho(0) = \rho_1 + \rho_2$ and $\Delta(\tau)$
- n = late time power law
- n = 1-5 (hot)
- n > 5 (cold)
- Separate the early time behavior (neutron-to-seed ratio) from late time behavior (rare earth peak formation)

Comparing Simulations To Data

Fix:

- τ~80ms
- Ye = 0.30
- nuclear model (FRDM)
- Allow other parameters to vary:
- S ~ 50 to 400
- n ~ 0 to 10

Elemental abundances

Old Constraint: Neutron To Seed Ratio

Comparing Simulations To Halo Star Data

New Constraint: Rare Earth Peak Forms

Constraint: Ratio A=195 Peak to REP

2nd Constraint: Ratio A=195 Peak to REP

Mumpower et al. (2012)

Result: New (Smaller) Constraint Region

New Constraints Do Remarkably Well

Comparing Simulations To Solar Data

Old Constraint: Neutron To Seed Ratio

Comparing Simulations To Solar Data

New Constraint: Rare Earth Peak Forms

Comparing Simulations To Solar Data

2nd Constraint: Ratio A=195 Peak to REP

Comparing Simulations To Solar Data

Late Time Neutron Capture Effect

3rd Constraint: Limit Late Time Neutron Capture

Mumpower et al. (2012)

Result: New (Smaller) Constraint Regions

Comparing Simulations To Solar Data

Neutron Capture Rate Uncertainties

- "Sensitivity study" how do abundances change with change in an individual rate?
- Baseline simulation fix conditions & rates remain changed
- Rate change simulation single rate is changed, all else fixed
- Does the rate change produce a change in the final abundances?

How Neutron Capture Rates Change Final Rare Earth Abundances – Local Changes Only

Each neutron capture rate changed by a factor of 10

Important Neutron Capture Rates Hot Evolution

Each neutron capture rate changed by a factor of 10

Important Neutron Capture Rates Cold Evolution

		96		98		100	<u> </u>	102 N	J	104		106		108	
	58	¹⁵⁴ Ce	¹⁵⁵ Ce	¹⁵⁶ Ce	¹⁵⁷ Ce	¹⁵⁸ Ce	¹⁵⁹ Ce	¹⁶⁰ Ce	¹⁶¹ Ce	¹⁶² Ce	¹⁶³ Ce	¹⁶⁴ Ce	¹⁶⁵ Ce	¹⁶⁶ Ce	¹⁶⁷ Ce
		¹⁵⁵ Pr	¹⁵⁶ Pr	¹⁵⁷ Pr	¹⁵⁸ Pr	¹⁵⁹ Pr	¹⁶⁰ Pr	¹⁶¹ Pr	¹⁶² Pr	¹⁶³ Pr	¹⁶⁴ Pr	¹⁶⁵ Pr	¹⁶⁶ Pr	¹⁶⁷ Pr	¹⁶⁸ Pr
	60	¹⁵⁶ Nd	¹⁵⁷ Nd	¹⁵⁸ Nd	¹⁵⁹ Nd	¹⁶⁰ Nd	¹⁶¹ Nd	¹⁶² Nd	¹⁶³ Nd	¹⁶⁴ Nd	¹⁶⁵ Nd	¹⁶⁶ Nd	¹⁶⁷ Nd	¹⁶⁸ Nd	¹⁶⁹ Nd
		¹⁵⁷ Pm	¹⁵⁸ Pm	¹⁵⁹ Pm	¹⁶⁰ Pm	¹⁶¹ Pm	¹⁶² Pm	¹⁶³ Pm	¹⁶⁴ Pm	¹⁶⁵ Pm	¹⁶⁶ Pm	¹⁶⁷ Pm	¹⁶⁸ Pm	¹⁶⁹ Pm	¹⁷⁰ Pm
N	62	¹⁵⁸ Sm	¹⁵⁹ Sm	¹⁶⁰ Sm	¹⁶¹ Sm	¹⁶² Sm	¹⁶³ Sm	¹⁶⁴ Sm	¹⁶⁵ Sm	¹⁶⁶ Sm	¹⁶⁷ Sm	¹⁶⁸ Sm	¹⁶⁹ Sm	¹⁷⁰ Sm	¹⁷¹ Sm
		¹⁵⁹ Eu	¹⁶⁰ Eu	¹⁶¹ Eu	¹⁶² Eu	¹⁶³ Eu	¹⁶⁴ Eu	¹⁶⁵ Eu	¹⁶⁶ Eu	¹⁶⁷ Eu	¹⁶⁸ Eu	¹⁶⁹ Eu	¹⁷⁰ Eu	¹⁷¹ Eu	¹⁷² Eu
	64	¹⁶⁰ Gd	¹⁶¹ Gd	¹⁶² Gd	¹⁶³ Gd	¹⁶⁴ Gd	¹⁶⁵ Gd	¹⁶⁶ Gd	¹⁶⁷ Gd	¹⁶⁸ Gd	¹⁶⁹ Gd	¹⁷⁰ Gd	¹⁷¹ Gd	¹⁷² Gd	¹⁷³ Gd
		¹⁶¹ Tb	¹⁶² Tb	¹⁶³ Tb	¹⁶⁴ Tb	¹⁶⁵ Tb	¹⁶⁶ Tb	¹⁶⁷ Tb	¹⁶⁸ Tb	¹⁶⁹ Tb	¹⁷⁰ Tb	¹⁷¹ Tb	¹⁷² Tb	¹⁷³ Tb	¹⁷⁴ Tb
	66	¹⁶² Dy	¹⁶³ Dy	¹⁶⁴ Dy	¹⁶⁵ Dy	¹⁶⁶ Dy	¹⁶⁷ Dy	¹⁶⁸ Dy	¹⁶⁹ Dy	¹⁷⁰ Dy	¹⁷¹ Dy	¹⁷² Dy	¹⁷³ Dy	¹⁷⁴ Dy	¹⁷⁵ Dy

Each neutron capture rate changed by a factor of 10

The Most Influential Rare Earth Neutron Capture Rates

		96		98	1	100		102 N	1	104	•	106		108	
	58	¹⁵⁴ Ce	¹⁵⁵ Ce	¹⁵⁶ Ce	¹⁵⁷ Ce	¹⁵⁸ Ce	¹⁵⁹ Ce	¹⁶⁰ Ce	¹⁶¹ Ce	¹⁶² Ce	¹⁶³ Ce	¹⁶⁴ Ce	¹⁶⁵ Ce	¹⁶⁶ Ce	¹⁶⁷ Ce
		¹⁵⁵ Pr	¹⁵⁶ Pr	¹⁵⁷ Pr	¹⁵⁸ Pr	¹⁵⁹ Pr	¹⁶⁰ Pr	¹⁶¹ Pr	¹⁶² Pr	¹⁶³ Pr	¹⁶⁴ Pr	¹⁶⁵ Pr	¹⁶⁶ Pr	¹⁶⁷ Pr	¹⁶⁸ Pr
	60	¹⁵⁶ Nd	¹⁵⁷ Nd	¹⁵⁸ Nd	¹⁵⁹ Nd	¹⁶⁰ Nd	¹⁶¹ Nd	¹⁶² Nd	¹⁶³ Nd	¹⁶⁴ Nd	¹⁶⁵ Nd	¹⁶⁶ Nd	¹⁶⁷ Nd	¹⁶⁸ Nd	¹⁶⁹ Nd
		¹⁵⁷ Pm	¹⁵⁸ Pm	¹⁵⁹ Pm	¹⁶⁰ Pm	¹⁶¹ Pm	¹⁶² Pm	¹⁶³ Pm	¹⁶⁴ Pm	¹⁶⁵ Pm	¹⁶⁶ Pm	¹⁶⁷ Pm	¹⁶⁸ Pm	¹⁶⁹ Pm	¹⁷⁰ Pm
N	62	¹⁵⁸ Sm	¹⁵⁹ Sm	¹⁶⁰ Sm	¹⁶¹ Sm	¹⁶² Sm	¹⁶³ Sm	¹⁶⁴ Sm	¹⁶⁵ Sm	¹⁶⁶ Sm	¹⁶⁷ Sm	¹⁶⁸ Sm	¹⁶⁹ Sm	¹⁷⁰ Sm	¹⁷¹ Sm
		¹⁵⁹ Eu	¹⁶⁰ Eu	¹⁶¹ Eu	¹⁶² Eu	¹⁶³ Eu	¹⁶⁴ Eu	¹⁶⁵ Eu	¹⁶⁶ Eu	¹⁶⁷ Eu	¹⁶⁸ Eu	¹⁶⁹ Eu	¹⁷⁰ Eu	¹⁷¹ Eu	¹⁷² Eu
	64	¹⁶⁰ Gd	¹⁶¹ Gd	¹⁶² Gd	¹⁶³ Gd	¹⁶⁴ Gd	¹⁶⁵ Gd	¹⁶⁶ Gd	¹⁶⁷ Gd	¹⁶⁸ Gd	¹⁶⁹ Gd	¹⁷⁰ Gd	¹⁷¹ Gd	¹⁷² Gd	¹⁷³ Gd
		¹⁶¹ Tb	¹⁶² Tb	¹⁶³ Tb	¹⁶⁴ Tb	¹⁶⁵ Tb	¹⁶⁶ Tb	¹⁶⁷ Tb	¹⁶⁸ Tb	¹⁶⁹ Tb	¹⁷⁰ Tb	¹⁷¹ Tb	¹⁷² Tb	¹⁷³ Tb	¹⁷⁴ Tb
	66	¹⁶² Dy	¹⁶³ Dy	¹⁶⁴ Dy	¹⁶⁵ Dy	¹⁶⁶ Dy	¹⁶⁷ Dy	¹⁶⁸ Dy	¹⁶⁹ Dy	¹⁷⁰ Dy	¹⁷¹ Dy	¹⁷² Dy	¹⁷³ Dy	¹⁷⁴ Dy	¹⁷⁵ Dy

Capture Rate Changed By Factor Of

Changes final abundances by 200% locally (A ~ 2 to 4 units)

Considering a range of conditions and nuclear models

Which Nuclei In The Rare Earth Peak Are Important?

The Rare Earth Peak: An Overlooked *r*-Process Diagnostic

- Formation: delicate, out of equilibrium; sensitive to thermodynamic conditions (Neutron separation energies vs Neutron capture rates)
- Understanding neutron capture (at low R) is critical:

Form / dissolve peak, late time neutron capture effect, uncertainties

- Successful formation \rightarrow New insights into freeze-out conditions
- Important nuclei 10-15 neutrons from stability