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r-Process Data

Solar r-process residuals (meteoritic data)

Halo stars (observational data)

Neutron Capture / Photodissociation

Beta Decay

Isotopic abundances Elemental abundances



  

Importance Of The Rare Earth Region
● Peak forms away from closed shells

● Thus, by a different mechanism than A=130, A=195 peaks

● Region forms at late times (low R) during the r-process

● Thus, sensitive to nuclear physics inputs

● And, thermodynamic conditions

Relatively β-stable

Relatively β-unstable

Region of interest



  

A Simple r-Process Calculation

Environment conditions

(temperature, density, ... )

nuclear physics inputs
(Sn, β-rates, n-cap rates, … )

reaction networkreaction network abundances



  

The r-Process Path
“Set of most abundant isotopes”

1. Understand nuclear flow

2. Relevant nuclear physics sets the path

3. Another way of looking at abundances
Z + N = A



  

Isotopic abundances

Understanding Solar Abundance Features

What about the Rare Earth Peak? (A~160)

How do the “peaks” form? (A=80, A=130, A=195)



  

Rare Earth Peak Formation

FRDM
HFB-17
ETFSI

Nuclear Models

Some example calculations...

                                
                                Final abundances

(Not 1966)



  

Hot Evolution

● T~1GK

● T and ρ decline relatively 
slowly

● Reaction Channels:
Neutron capture*
Photo-dissociation*
β-decay

● Peak forms by “funneling” 
mechanism

Cold Evolution

● T<1GK

● T and ρ decline relatively 
quickly

● Reaction Channels:
Neutron capture*
β-decay*
β-delayed neutron emission

● Peak forms by “trapping” 
mechanism

How Does The Rare Earth Peak Form?
By Two Different Mechanisms

X X



  

Rare Earth Peak Formation
Hot Evolution - Funneling

FRDM

Nuclear Model

Path

Legend

Stable

Sn

β-rates

Mechanism discovered by Surman + Engel (1997)

Snapshot 1:
Before Peak Forms

Snapshot 2:
During Peak Formation



  

Snapshot 1:
Before Peak Forms

Snapshot 2:
During Peak Formation

ETFSI

Nuclear Model

Path

Legend

Stable

N-cap rates

β-rates

Rare Earth Peak Formation
Cold Evolution - Trapping

Mumpower et al. (2012)



  

Snapshot 1:
Before Peak Forms

Snapshot 2:
During Peak Formation

ETFSI

Nuclear Model

Path

Legend

Stable

N-cap rates

β-rates

Rare Earth Peak Formation
Cold Evolution - Trapping

Mumpower et al. (2012)



  

Peak Formation – Fails
Due To Neutron Captures Closer To Stability 

20 neutrons 
from stability

15 neutrons 
from stability

10 neutrons 
from stability

ETFSI

Nuclear Model

Path

Legend

Stable

N-cap rates

β-rates

Mumpower et al. (2012)



  

Successful Rare Earth Peak Formation

FRDM

Nuclear Model

Path

Legend

Stable

N-cap rates

β-rates

20 neutrons 
from stability

15 neutrons 
from stability

10 neutrons 
from stability

Mumpower et al. (2012)



  

Nuclei Important For Peak Formation?

Those nuclei 10-15 neutrons from stability...

Stable

AME2003

DMM

N-cap

Important Nuclei

Legend

Mumpower et al. (2012)



  

A New Way To Constrain r-Process Conditions

● Use successful rare earth peak formation to constrain 
conditions favorable for the r-process

● Perform many simulations each with differing conditions

● Compare final pattern to both solar and halo star data

Isotopic abundances Elemental abundances



  

● Similar to ν-driven wind parameterization by Meyer (2002) with...

● 3τ=τdyn and ρ(0)=ρ1+ρ2 and Δ(τ)

● n = late time power law

● n = 1-5 (hot)

● n > 5 (cold)

● Separate the early time behavior (neutron-to-seed ratio) from late time 
behavior (rare earth peak formation)

Density Parameterization

ρ(t )=ρ1 e−t / τ+ ρ2 ( Δ

Δ+ t )
n

early-time late-time



  

Fix:

● τ ~80ms
● Ye = 0.30

● nuclear model (FRDM)

● Allow other parameters to vary:

● S ~ 50 to 400 

● n ~ 0 to 10

Comparing Simulations To Data

ρ(t )=ρ1 e−t / τ+ ρ2 ( Δ
Δ+ t )

n

early-time late-time

Elemental abundances



  

Old Constraint: Neutron To Seed Ratio

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

Comparing Simulations To Halo Star Data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

New Constraint: Rare Earth Peak Forms

Rare earth peak 
matches data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

Constraint: Ratio A=195 Peak to REP

Rare earth peak 
matches data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

2nd Constraint: Ratio A=195 Peak to REP

Rare earth peak 
matches data

A=195 peak to Rare 
earth peak ratio 
matches data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

Result: New (Smaller) Constraint Region

Rare earth peak 
matches data

A=195 peak to Rare 
earth peak ratio 
matches data

Neutron to seed ratio
R~80

New constraint region

R>80 Fission
Mumpower et al. (2012)



  

New Constraints Do Remarkably Well

Avg simulation Halo star data
Mumpower et al. (2012)



  

Comparing Simulations To Solar Data



  

Old Constraint: Neutron To Seed Ratio

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

Comparing Simulations To Solar Data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

New Constraint: Rare Earth Peak Forms

Rare earth peak 
matches data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

Comparing Simulations To Solar Data

Rare earth peak 
matches data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

2nd Constraint: Ratio A=195 Peak to REP

Rare earth peak 
matches data

A=195 peak to Rare 
earth peak ratio 
matches data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

Comparing Simulations To Solar Data

Rare earth peak 
matches data

A=195 peak to Rare 
earth peak ratio 
matches data

Neutron to seed ratio
R~80

R>80 Fission
Mumpower et al. (2012)



  

Late Time Neutron Capture Effect

Rare earth peak 
matches data

A=195 peak to Rare 
earth peak ratio 
matches data

Neutron to seed ratio
R~80

Late time neutron capture effect No late time neutron capture

R>80 Fission
Mumpower et al. (2012)



  

3rd Constraint: Limit Late Time Neutron Capture

Rare earth peak 
matches data

A=195 peak to Rare 
earth peak ratio 
matches data

Neutron to seed ratio
R~80

No late time changes
from neutron capture

R>80 Fission
Mumpower et al. (2012)



  

Result: New (Smaller) Constraint Regions

Rare earth peak 
matches data

A=195 peak to Rare 
earth peak ratio 
matches data

New constraint region

Neutron to seed ratio
R~80

No late time changes
from neutron capture

R>80 Fission
Mumpower et al. (2012)



  

Comparing Simulations To Solar Data

Avg simulation Solar data
Mumpower et al. (2012)



  

Neutron Capture Rate Uncertainties

● “Sensitivity study” - how do abundances change with change in 
an individual rate?

● Baseline simulation – fix conditions & rates remain changed

● Rate change simulation – single rate is changed, all else fixed 

● Does the rate change produce a change in the final 
abundances?

Stable

AME2003

DMM

N-cap

Important Nuclei



  

Hot Evolution Cold Evolution

How Neutron Capture Rates Change Final Rare Earth 
Abundances – Local Changes Only

Each neutron capture rate changed by a factor of 10
Mumpower et al. (2012)



  

Important Neutron Capture Rates
Hot Evolution

Unchanged

Legend

Small Effect

Medium Effect

Largest Effect

Each neutron capture rate changed by a factor of 10
Mumpower et al. (2012)



  

Important Neutron Capture Rates
Cold Evolution

Unchanged

Legend

Small Effect

Medium Effect

Largest Effect

Each neutron capture rate changed by a factor of 10
Mumpower et al. (2012)



  

The Most Influential Rare Earth Neutron Capture Rates

k=100

k=50

k=10

k=5

Capture Rate 
Changed By 
Factor Of

Changes final 
abundances by 
200% locally 
(A ~ 2 to 4 units)

Considering a range of conditions and nuclear models

Mumpower et al. (2012)



  

Which Nuclei In The Rare Earth Peak Are Important?

Stable

AME2003

DMM

N-cap

Important Nuclei

Legend

Those nuclei 10-15 neutrons from stability

Mumpower et al. (2012)



  

● Formation: delicate, out of equilibrium; sensitive to thermodynamic 
conditions (Neutron separation energies vs Neutron capture rates)

● Understanding neutron capture (at low R) is critical:

   Form / dissolve peak, late time neutron capture effect, uncertainties

● Successful formation → New insights into freeze-out conditions

● Important nuclei 10-15 neutrons from stability

The Rare Earth Peak:
An Overlooked r-Process Diagnostic
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