Direct Mass Measurements of Stored Exotic Nuclei

Yuri A. Litvinov

NIC XII – Satellite Workshop on R-Process Nucleosynthesis

4-5 August 2012, The Sebel Hotel, Cairns, Australia

Nucleosynthesis on the Chart of the Nuclides

Production of Exotic Nuclei

Devices for precise mass measurements

Penning trap

Storage ring

relativistic particles

particles at nearly rest in space

* ion cooling * long storage times * single-ion sensitivity * high accuracy

Direct Mass Measurements on the Chart of the Nuclides

The mass of ⁸²Zn

Composition of the outer crust of a neutron star

Schottky and Isochronous Mass Spectrometry

Schottky Mass Spectrometry

1987 - B. Franzke, H. Geissel, G. Münzenberg

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta(m/q)}{m/q} + \underbrace{\Delta v}_{v} \underbrace{\Delta v}_{v}$$

HELMHOLTZ

GEMEINSCHAFT

Experimental Storage Ring ESR

ESR: B. Franzke, NIM B 24/25 (1987) 18

Stochastic cooling: F. Nolden et al., NIM B 532 (2004) 329 Electron cooling: M. Steck et al., NIM B 532 (2004) 357

Schottky Mass Spectrometry (SMS)

Discovery of New Isotopes and Isomers

Direct Mass Measurement of ²⁰⁸Hg Nuclide

p-n interactions are sensitive to the spatial overlaps of the proton and neutron wave functions

L. Chen et al., PRL 102 (2009) 122503

HELMHOLTZ |GEMEINSCHAFT —

Direct Mass Measurement of ¹⁹⁷Au Projectile Fragments

D. Shubina et al., In preparation (2012)

Isochronous Mass Spectrometry

1985 - H. Wollnik, Y. Fujita, H. Geissel, G. Münzenberg, et al.

GEMEINSCHAE1

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta(m/q)}{m/q} + \underbrace{\gamma_t^2}_{\gamma_t^2} \underbrace{\gamma_t^2}_{t}$$
N=50, 82
HELMHOLTZ

GSÏ

Heavy Ion Research Facility in Lanzhou (HIRFL)

CSRm-CSRe Complex at IMP in Lanzhou

Time-of-Flight detector for the IMS

IMS: Time-of-Flight Spectra

New half-live domain for storage-ring experiments

Mass Measurements Relevant for Nucleosynthesis in Stars

NUCLEAR ASTROPHYSICS

HELMHOLTZ

Star bursts pinned down

One of the main uncertainties in the burn-up of X-ray bursts from neutron stars has been removed with the weighing of a key nucleus, 65 As, at a new ion storage ring.

NATURE PHYSICS | VOL 7 | APRIL 2011 | www.nature.com/naturephysics

BRENNPUNKT

Kein Halten am Wartepunkt

Hochpräzise Massenmessungen erklären die Kernreaktionen bei Ausbrüchen von Röntgenstrahlung. Physik Journal 10 (2011) Nr. 6

Internationales Büro

Light curve shape of Type I x-ray burst

X.Tu, et al., PRL 106 (2011) 112501

Limitation of the Isochronicity

CSRm-CSRe Complex at IMP in Lanzhou

Direct Mass Measurements on the Chart of the Nuclides

TSR @ ISOLDE

Erwin Siesling

CRYRING@ESR

Study Group

Norbert Angert Angela Bräuning-Demian Hakan Danared Wolfgang Enders Mats Engström Bernhard Franzke Anders Källberg Oliver Kester Michael Lestinsky Yuri Litvinov Markus Steck Thomas Stöhlker

RIKEN Radioactive Ion Beam Facility

Next-Generation Heavy-Ion Beam Facility HIAF

FAIR - Facility for Antiproton and Ion Research

ILIMA: Masses and Halflives

1913 - J. J. Thompson, Entdeckung der Isotope (Nobelpreis 1906)

Sir Joseph John Thomson (1856-1940)

Abb. 1.6: Prinzipskizze des Thompson'schen Parabelspektrographen

- Special Issue of International Journal of Mass Spectrometry "Birth of Mass Spectrometry" (Klaus Blaum, Yuri Litvinov (Eds.))

- Dedicated Symposium "100 Years of Mass Spectrometry", DPG-Meeting, Hanover, 2013 (Klaus Blaum, Yuri Litvinov (Org.))

- 513. WE-Heraeus Seminar on "Astrophysics with Ion-Storage Rings" (Yuri Litvinov, Rene Reifarth and Kerstin Sonnabend (Org.))

- 530. WE-Heraeus Seminar on "Nuclear Masses and Nucleosynthesis" (Almudena Arcones, George Bertsch and Klaus Blaum (Org.))

New Atomic Mass Evaluation (AME2012) is to appear in 2012/2013

Many Thanks to

ISOLTRAP Collaboration FRS-ESR Collaboration MATS Collaboration ILIMA Collaboration RI-RING Collaboration CSRe Collaboration TSR@ISOLDE Collaboration CRYRING@ESR Collaboration SPARC@HESR Collaboration

The University of Edinburgh

