NIC12 r-process workshop 04 - 05 August 2012

^{BASEL} "Are Core-Collapse Supernovae still possible sites for the r-process?"

「重力崩壊型超新星は、(まだ) R過程サイトの天体サイト候補なのか?」

<u>Nobuya Nishimura</u>

(西村 信哉)

heavy element nucleosynthesis beyond iron

Where are the astronomical sites?

Newtrino Driven Wind

self-consistent simulation of NDW based on state of the art hydrodynamic simulation (in 1D: spherical symmetry) Fischer et al. 2010 progenitor: 10.8 Mo progenitor: 8.8 M_☉ oroton-rich 0.6 0.6 0.5 0.5 Electron Fraction, Y_{e} Electron Fraction, Y_{e} 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0' 0 0 0 2 8 9 10 1 3 6 2 3 4 1 Time After Bounce [s] Time After Bounce [s] $e^- + p \rightleftharpoons n + v_e$, <u>NDW's are proton-rich</u> $+ n \rightleftharpoons p + \overline{\nu}_e,$ rather than neutron-rich $e^- + \langle A, Z \rangle \rightleftharpoons \langle A, Z - 1 \rangle + \nu_e,$

SN simulation & nucleosynthesis

- $\cdot\,normal$ SNe via neutrino heating ($>10M_{\odot}$)
 - Y_{e} > 0.48 (Fujimoto et al. 2011)
- ONeMg stars) SNe
 - successful explosion models (both 1D and 2D)
 - $Y_e > 0.4$ (2D model); weak r-process

(Wanajo 2009, 2011)

> 10 M_o (2D) (Fujimoto 2011)

(Wanajo 2011)

The Core-Collapse Supernova itself is no longer the r-process site? extra-scenarios are still certain candidate

quark-hadron phase transition

→ Quark/Hybrid stars

- MHD Jet supernova (Strong Mag. fields)
 - → Magnetars

both are explosion mechanisms avoiding neutrino heating (= destroy neutrons) "Nucleosynthesis in core-collapse supernova explosions triggered by Quark-Hadron phase transition"

Nishimura et al., ApJ in press (arXiv: 1112.5684)

collaborators

<u>Basel</u>

- F.-K. Thielemann
- M. Hempel
- R. Käppeli
- T. Rauscher
- C. Winteler

<u>GSI Darmstadt</u> T. Fischer G. Martínez-Pinedo

C. Frölich (North Carolina) I. Sagert (Michigan)

CC-SN via quark-hadron phase transition

SNe via the quark-hadron phase transition

quark-hadron phase transition occurs after the normal core-bounce :

Sagert et al. (2009)、Fischer et al. (2011)

the explosion model

ejection process & neutron richness

entropy & Y_e : the end of NSE (T = 9 GK)

the final abundances:

<u>total ejecta</u>

final abundances (represented) : each zone

final abundances: neutrino driven winds

A < 85 elements are produced via ν p-process

physical uncertainties: Ye

$$Y_{\rm e, \ cor} = 0.5 + (Y_{\rm e} - 0.5) \times \left(1 + \frac{p_{\rm cor}}{100}\right)$$

over 10% reductions are becoming unphysical for current model

Ye uncertainties with observation

solar system (strong r-process)

<u>conclusion</u>

• <u>r-process nucleosynthesis</u>

- reproduce A \sim 110 r-element ("weak" r-process)
- 2nd peak is the limit within the physical uncertainty
- "strong" r-process require 30% decrease of Y_e 's \rightarrow need different model (multi-D, progenitor, EoS etc.)
- <u>neutrino driven wind</u>
 - similar environment to normal CC-SNe
 - A \sim 90 proton-rich isotopes (ν p-process)

Jet-like SN induced by Magnetic fields

neutron stars have strong magnetic fields

- -neutron stars (pulsars) : $\sim 10^{12}\,{
 m G}$
- -magnetar : $\sim 10^{15}~{\rm G}$ ($\sim 1~\%$ of the neutron stars)
- Jet-like Explosions
 - •GRB central engine
 - Hypernovae

jet/hypernova image

MHD "Jet" supernova explosion :

- 2D Newtonian without neutrino
 - MHD-SN: Nishimura et al. 2006
 - "Collapsar model" (BH + disk): Fujimoto et al. (2007, 2008)
- 2D Relativity and neutrino cooling:
 - explosion model: Takiwaki et al. 2009
 - nucleosynthesis: Nishimura et al. (2010, 2012 prep)
 - Takiwaki 2009

Nishimura 2010

<u>The first r-proc. study based on 3D MHD models</u> Winteler et al. ApJL 2012; (Basel collaboration)

$$M_{ej} = 0.672 \times 10^{-2} M_{\odot}$$

red : includes neutrino green : no neutrino

The first r-proc. study based on 3D MHD models

In the context of r-proc. study (and also explosion mechanism), there are still a lot of open questions.

- long-term simulations
- systematic survey of wide range of mag. and rot.
- •weak initial mag. field rot.
- detailed micro-physics (neutrino, EOS and mag. fields, etc.)
- detailed macro-physics (magneto-rotational instabilities)
- relation to (optical) observation
- large breaking of axis-symmetry
 - different rotational and mag. axis ...

long-term simulations based on wider range of initial conditions under axis-symmetry. (2D hydro. with rot. and mag. fields)

MHD "Jet" supernova explosion :

ejected r-elem. mass M $_{\rm r-elem.}\sim10^{-3}$ to $10^{-2}\,{\rm M}_\odot$ (typically)

<u>movie</u>

Nishimura at al. (2012 prep.) based on MHD-SN model by Takiwaki 2009

