β-Decays of Isotones with N=126 and Nuclei nearby and R-Process Nucleosynthesis

Toshio Suzuki Nihon University

NIC XII Satellite workshop, Cairns Aug. 4, 2012

R-Process Nucleosynthesis and Beta Decays of N=126 Isotones

H Grawe et al

Figure 18. The figure shows the range of r-process paths, defined by their waiting point nuclei. After decay to stability the abundance of the r-process progenitors produce the observed solar r-process abundance distribution. The r-process paths run generally through neutron-rich nuclei with experimentally unknown masses and half lives. In this calculation a mass formula based on the ETFSI model and special treatment of shell quenching [79] has been adopted (courtesy of Kratz and Schatz).

r-process

Mass formula -> waiting point nuclei Beta decay rates at the waiting point nuclei, delayed nemission probability

Other effects:

neutrino processes: $n(v,e^{-})p$, $\alpha(v,e^{-}p)^{3}He^{-}$ less n -> Y_e increses -> suppression of the 3rd peak of the r-process (Meyer et al.) reaction rates of α -processes in light nuclei (Kajino et al.) enhanced -> less n -> suppression of the 3rd peak fission processes (Langanke-Pinedo)

Beta decay half-lives:

Decay rates, Mass

•GT vs GT+FF(first-forbidden)

•SM, QRPA

- 1. Beta-decays of N=126 isotones
- Gamow-Teller (GT) + First-forbidden (FF) transitions
 Shell-model calculation
- Short half-lives of the isotones compared to the standard ones by Moller
- 2. Effects on the r-process nucleosynthesis
- •Element abundances at 3rd-peak region
- 3. Dependence of half-lives on quenching factors

Resuts thus far: SM (GT), QRPA, CQRPA etc. Theoretical half-lives prediction: N=126 scattered

Figure 26. Theoretical half life predictions for N = 126 isotones in the shell model [299], the HFB [76], FRDM [57] and the DF3+CQRPA [77] approaches.

SM (GT): Langanke, Martinez-Pinedo, RMP 75, 819 (2003) QRPA: Moller, Pfeiffer and Kratz, PR C67, 055802 (2003) CQRPA: Borzov, PR C67, 025802 (2003)

Grawe, Langanke, Martinez-Pinedo, RPP 70, 1525 (2007) QRPA

GT

GT+FF

Moller, Pfeiffer, Kratz, PR C67, 055802 (2003)

Beta Decays of N=126 Isotones

Z=64-73 (A=190-199)

- Shell-model calculations: Kuo-Herling G + mod. Steer et al., PR C78, 061302 (2008) Ryndstrom et al., NP A512, 217 (1990) Energy levels of Z=77-81 nuclei well described
- •GT (1⁺) + FF (first-forbidden: 0-, 1-, 2-) transitions

$$O(1^{+}) = g_{A}\sigma t_{-} \qquad \Lambda(s^{-1}) = \ln 2/t = f/8896(s)$$

$$O(0^{-}) = g_{A}[\frac{\sigma \cdot p}{m} + \frac{\alpha Z}{2R}i\sigma \cdot r]t_{-} \qquad f = \int_{1}^{w_{0}} C(w)F(Z,w)pw(w_{0} - w)^{2}dw$$

$$O(1^{-}) = [g_{v}\frac{p}{m} - \frac{\alpha Z}{2R}(g_{A}\sigma xr - ig_{v}r)]t_{-} \qquad C(w) = K_{0} + K_{1}w + K_{-1}/w + K_{2}w^{2}$$

$$K_{N}: \vec{r}, [\vec{r} \times \vec{\sigma}]^{\lambda} (\lambda = 0, 1, 2)$$

$$O(2^{-}) = i\frac{g_{A}}{\sqrt{3}}[\sigma xr]_{\mu}^{2}\sqrt{p_{e}^{2}} + q_{v}^{2}t_{-} \qquad \gamma_{5}, \vec{\alpha} \qquad Warburton et al., Ann.Phys.$$

$$R(w) = K_{0} + K_{1}w + K_{-1}/w + K_{2}w^{2}$$

$$K_{N}: \vec{r}, [\vec{r} \times \vec{\sigma}]^{\lambda} (\lambda = 0, 1, 2)$$

Structure of N=126 Isotones

 Shell-model calculations of proton-hole states of 208Pb Kuo-Herling G + mod. proton hole config.: 2s1/2, 1d3/2, 0h11/2, 1d5/2, 0g7/2 Energy levels of Z=77-81 nuclei well described

FIG. 3. Experimental and calculated partial level schemes of the $N = 126^{204}$ Pt and 206 Hg [9] nuclei. Arrow widths denote relative intensities of parallel decay branches. The dominant state configurations are indicated. (a) and (d) are calculations using the Rydsrtöm matrix elements, while (b) and (c) are with the modified ones, as described in the text.

FIGURE 4. Same as figure 3, but for ²⁰³Ir. The experimental level scheme is preliminar

$$\Lambda(\mathbf{s}^{-1}) = \ln 2/t = \mathbf{f} / 8896(\mathbf{s})$$

$$\mathbf{f} = \int_{1}^{\mathbf{w}_{0}} \mathbf{C}(\mathbf{w}) \mathbf{F}(\mathbf{Z}, \mathbf{w}) \mathbf{pw}(\mathbf{w}_{0} - \mathbf{w})^{2} \mathbf{dw}$$

$$\mathbf{C}(\mathbf{w}) = \mathbf{K}_{0} + \mathbf{K}_{1}\mathbf{w} + \mathbf{K}_{-1} / \mathbf{w} + \mathbf{K}_{2}\mathbf{w}^{2}$$

$$\mathbf{K}_{N} : \quad \vec{\mathbf{r}}, \quad [\vec{\mathbf{r}} \times \vec{\boldsymbol{\sigma}}]^{\lambda} \quad (\lambda = 0, 1, 2)$$

$$\gamma_{5}, \quad \vec{\alpha}$$

•GT (1⁺) $\mathbf{K}_{0} = \frac{1}{2\mathbf{J}_{i} + 1} | < \mathbf{f} || \mathbf{g}_{\mathbf{A}} \sigma \mathbf{t}_{-} || \mathbf{i} > |^{2}$ $\mathbf{q} = \mathbf{g}_{\Delta}^{\text{eff}} / \mathbf{g}_{\Delta} < 1$ $v0h9/2 \rightarrow \pi 0h11/2$

Warburton et al., Ann.Phys.187 (1988) Behrens and Buring, NPA162 (1971) Schopper, (North-Holland, 1966)

•1*

$$\mathbf{z} = 2\mathbf{g}_{\mathbf{A}} < \mathbf{J}_{\mathbf{f}} \mathbf{T}_{\mathbf{f}} \| \mathbf{i} [\mathbf{r} \mathbf{x} \sigma]^{2} \mathbf{t}_{-} \| \mathbf{J}_{\mathbf{i}} \mathbf{T}_{\mathbf{i}} > \mathbf{C} \quad \leftrightarrow \quad \mathbf{g}_{\mathbf{A}} [\mathbf{r} \mathbf{x} \sigma]^{2}$$

$$\mathbf{q} = \mathbf{g}_{\mathbf{A}}^{\mathbf{eff}} / \mathbf{g}_{\mathbf{A}} < 1$$

$$\mathbf{K}_{0} = \frac{1}{12} \mathbf{z}^{2} (\mathbf{W}_{0}^{2} - \lambda_{2})$$
$$\mathbf{K}_{1} = -\frac{1}{6} \mathbf{z}^{2} \mathbf{W}_{0}$$
$$\mathbf{K}_{2} = \frac{1}{12} \mathbf{z}^{2} (1 + \lambda_{2})$$

$$\mathbf{O}(2^{-}) = \mathbf{i} \frac{\mathbf{g}_{\mathrm{A}}}{\sqrt{3}} [\mathbf{\sigma} \mathbf{x} \mathbf{r}]_{\mu}^{2} \sqrt{\mathbf{p}_{\mathrm{e}}^{2} + \mathbf{q}_{\nu}^{2}} \mathbf{t}_{-}$$

(Calculations are done with all the K_0 , K_1 , K_2 terms)

e.g.							
Z=64 (18 proton-holes)							
orbit number of holes							
2s1/2	0-2						
1d3/2	2-4						
0h11/2	10-12	2					
1d5/2	0-2	00-					
0g7/2	0	0p-0h+2p-2h					
sum	18						
Z=68 (14 proton-holes)							
orbit	numbe	er of holes					
2s1/2	0-2						
1d3/2	2-4	X X					

14 0p-8h+2p-10h

0h11/2 8-10 80 100 sum

SD+E1 (1⁻) strengths

spin part only

$$Q=g_{A}^{\text{eff}}/g_{A}=0.7, \epsilon =2.0 (0^{-})$$

Neumann-Cosel et al, PRL 82 (1999) $Q=g_s^{eff}/g_s=0.64$: 2- in ⁹⁰Zr (e-scatt.)

r-process nucleosynthesis

Constant Entropy Wind Model $L_v=0.5x10^{51} \text{ erg/s}$ S=133 k_B (γ , e⁻, e⁺) dm/dt=2.34x10⁻⁶ M_{sun}

 τ = 5.60 ms for T₉=5 ->T₉=2 T_{9f}=0.8

Neutrino processes on n, p and ⁴He are included

Half-lives:
Standard (Moller et al.)
Modified

Large quenchings are favored in A =206 $(g_A^{eff}/g_A, g_V^{eff}/g_V)=(0.34, 0.67)$ (0.51, 0.30) (0.47, 0.64)Warburton, PR C 44, 233 (1991) PR C42, 2479 (1990)

Rydstrom, NP A512, 217 (1990)

Transitions		Values of g_A and g_V		log fot	$\sqrt{C(w)}$ (fm)
Initial	Final	ϵ for 0 ⁻	$(g_A/g_A^{free}, g_V/g_V^{free})$ for 1 ⁻		
²⁰⁸ Hg (0 ⁺)	²⁰⁸ Tl (0 ⁻ g.s.)	2.0		5.199 (5.087)	76.3 (86.8)
		1.8		5.432 (5.320)	58.3 (66.3)
		Ref. [21]		5.173	78.6
	Expt. [28]			5.41	59.8
208 Hg (0 ⁺)	²⁰⁸ Tl (1 ⁻ , 0.3049 MeV)		(a) (0.34, 0.67)	5.017 (4.929)	94.0 (104.1)
			(b) (0.51, 0.30)	5.157 (5.127)	80.0 (82.9)
			(c) (0.47, 0.64)	4.921 (4.832)	105.0 (116.4)
			(0.34, 0.40)	5.267 (5.178)	70.5 (78.2)
			Ref.[21]	5.181	77.9
	Expt.[28]		1 4	5.24	72.7

$$\overline{C(w)} = f/f_0$$

$$f_0 = \int_1^{w_0} F(Z, w) pw(w_0 - w)^2 dw$$

$$f = \int_1^{w_0} C(w) F(Z, w) pw(w_0 - w)^2 dw$$

$$C(w) = K_0 + K_1 w + K_{-1}/w + K_2 w^2,$$
9195 × 10⁵

$$\overline{C(w)} = \frac{9195 \times 10^5}{f_0 t} \quad (\text{fm}^2).$$

		1	1	1 1	
A=205	$^{205}Au (3/2^+)$ $^{205}Hg (1/2^+)$	2_{1}^{-})	(a) (0.34, 0.67)	6.197 (6.116) 2	24.2 (26.5)
			(b) (0.51, 0.30)	8.171 (7.834) 2	λ.49 (3.67)
			(c) (0.47, 0.64)	6.412(6.326) 1	8.9 (20.8)
			(0.34, 0.94)	5.793 (5.726) 3	38.7 (41.6)
	Expt. 28			5.79	38.6
	205 Au (3/2 ⁺) 205 Hg (3/2 ⁻ ₁ , 0.4	675 MeV)			
	0-	2.0		5.674 (5.541) 4	44.1 (51.5)
		1.45		6.832 (6.699) 1	11.6 (13.6)
	$0^{-} + 1^{-}$	1.45	(a) (0.34, 0.67)	6.502 (6.247) 1	17.0 (22.8)
		1.45	(b) (0.51, 0.30)	6.000 (5.870) 3	30.3 (35.2)
		1.45	(c) (0.47, 0.64)	6.266 (6.073) 2	2.3 (27.9)
		1.45	(0.34, 0.94)	6.425 (6.173) 1	8.6 (24.9)
	Expt. 28			6.43	18.5
$\Delta - 204$	Transitions	Va.	lues of g_A and g_V	Half-life (s)	•
$\Lambda - 20 T$	Initial Final	ϵ for 0^- (g	$_{A}/q_{A}^{free}$, q_{V}/q_{V}^{free}) for 1	1-	
	²⁰⁴ Pt (0 ⁺) ²⁰⁴ Au (0 ⁻)	2.0	- <i>iaa (a</i> - <i>ia</i>)	65.1 (62.0)	$\frac{1}{C(w)} = \frac{9195 \times 10^{\circ}}{(\text{fm}^2)}$
	²⁰⁴ Pt (0 ⁺) ²⁰⁴ Au (0 ⁻ + 1	-) 2.0	(a) (0.34, 0.67)	22.8 (18.6)	fot (iiii).
		2.0	(b) (0.51, 0.30)	31.8 (26.9)	-
		2.0	(c) (0.47, 0.64)	91.1 (17.1)	_
		0.0	(0,7,1,0)	10.0 (9.0)	$f_{\tau} = \int_{0}^{w_0} E(Z, w) m(w_{\tau} - w)^2 dw$
		2.0	(0.7, 1.0)	10.9 (8.0)	$f_0 = \int_1 F(Z, w) pw(w_0 - w) uw$
		2.0	(0.34, 1.0)	14.4 (11.3)	
		2.0	(0.51, 1.0)	12.7(10.0)	
	Expt. [28]			10.3 ± 1.4	

Dependence on $(g_A^{\text{eff}}/g_A, g_V^{\text{eff}}/g_V)$

Summary

 Shell model calculations for beta-decay halflives including both GT and FF transitions
 → Short half-lives for beta decays of N=126
 isotones (waiting point nuclei for the rprocess) compared to a standard model
 (FRDM)

 \rightarrow The 3rd peak of the r-process element abundances is shifted toward larger mass number region.

Quenchings of $g_{\rm A}$ and $g_{\rm V}$ in FF need further study

Collaborators

Takashi Yoshida (Univ. of Tokyo)Toshitaka Kajino (NAO, Univ. of Tokyo)Takaharu Otsuka (CNS, Univ. of Tokyo)

Suzuki, Yoshida, Kajino, Otsuka, PR C85, 015802 (2012)