

NIC XII - Satellite workshop on r-process nucleosynthesis

Sensitivities of the r-process to ...masses, β -decay rates, cross-sections nuclear structure

Ani Aprahamian

Institute for Structure & Nuclear Astrophysics University of Notre Dame, Notre Dame, IN (USA)

- Robustness of observational r-process patterns
- Uncertainties in astrophysical r-process sites
- What about the nuclear properties? r-process basic idea

NIC XII - Satellite workshop on r-process nucleosynthesis

r-process

Major Shells and evolution of shells...

Experimental & Theoretical Challenges

Available online at www.sciencedirect.com

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 54 (2005) 535-613

www.elsevier.com/locate/ppnp

Review

Nuclear structure aspects in nuclear astrophysics

A. Aprahamian^a, K. Langanke^b, M. Wiescher^{a,*}

^aDepartment of Physics and the Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556, USA ^bInstitut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus C, Denmark

First experiment: r-process in the Ni region Hosmer et al. PRL 94, 112501 (2005)

Impact of ⁷⁸Ni half-life on r-process models

N=56 subshell with Z=34???

Quinn et al., Phys. Rev. C 85, 035807 (2012)

Fragmentation of 120 MeV/u ¹³⁶Xe beam

	Implantations		Maximum Likelihood Method (ms)
⁸⁷ As	27	12	$1450(550)^{+3900}_{-1250}$
^{88}As	16	8	$200(10)^{+200}_{-90}$
88 Se	144	74	$650(35)^{+175}_{-140}$
⁸⁹ Se	180	90	$345(25)^{+95}_{-80}$
90 Se	70	30	$195(10)^{+95}_{-65}$

r-process sensitivities...masses

More quantitative approach to choosing to measure nuclei that would have the greatest impact on

What?

Brad Meyer code modified by R. Surman various mass models-

FRDM, Duflo-Zuker, ETFSIQ, HFB-21, F-spin

Method:

Adjusted the separation energy of each nucleus ± 25% (>3000 nuclei twice....)

Calculated the max and fractional change from final abundances

What did we find?

Some consistent set of nuclei that are the most important to measure

So, What did we do?

Simulations..... Varied astrophysical conditions varied seed nuclei varied mass models

Input initial astrophysical conditions

Temperature/density neutron/seed ratios Freeze-out times

Input nuclear physics

masses n-capture rates beta decay half-lives (fission recycling, alpha recycling, neutrino interactions off)

Neutron separation energy sensitivity study

S. Brett, I. Bentley, N. Paul, A. Aprahamian

Start with a baseline simulation

(here, the H-event conditions from Qian et al were used)

Vary one separation energy by 25% and rerun the simulation

Repeat >6000 times

(twice for each heavy nucleus in the network)

$$\Delta Y_{S_n(Z_i,A_i) \pm 25\%} = \sum_{A} \left[Y_{baseline}(A) - Y_{S_n(Z_i,A_i) \pm 25\%}(A) \right]$$

small S_n, enrichment around N=50, 82,126

Input Parameters for the simulation were based on... Neutrino-less H-event from Qian et. al

Description	Value		
Seed Nucleus	⁹⁰ Se		
$N_{neutron}/N_{seed}$	86		
*Seed Nucleus	⁷⁰ Fe		
$N_{neutron}/N_{seed}$	67		
Initial Density ($ ho_5=10^5 g/cm^3$)	0.0034		
Initial Temperature ($T_9 = 10^9 K$)	1.5		
Freeze-out Time	0.86s		

* ⁹⁰Se was replaced with ⁷⁰Fe in order to allow for the dependence on the masses of nuclei between $70 \ge A \ge 90$ to be investigated. This was done in such a way that the electron fraction remains constant (Y_e =.19).

Evaluating the impact of the separation energy change Two approaches

$$\Delta_{\pm 25\%}(N, Z) = \sum_{A} \frac{|Y(A) - Y(A, \pm \Delta S_n(N, Z))|}{Y(A)}$$

 $\Delta Y_{\pm 25\%}(N, Z) = \sum_{A} |Y(A) - Y(A, \pm \Delta S_n(N, Z))|.$

FRDM

Neutron separation energy sensitivity study

S. Brett, I. Bentley, N. Paul, A. Aprahamian

The role of neutron separation energies in a hot r-process

ΔY for FRDM		ΔY for ETFSI-Q		ΔY for DZ		ΔY for HFB21	
Nucleus	ΔY	Nucleus	ΔY	Nucleus	ΔY	Nucleus	ΔY
¹³⁶ Cd	20.2	¹⁴⁰ Sn	20.1	⁸⁰ Ni	13.6	¹³⁶ Cd	22.7
¹⁴⁰ Sn	12.1	¹³⁶ Cd	19.0	⁷⁹ Ni	9.96	¹³⁷ Cd	10.8
¹³⁵ Cd	8.80	¹⁴² Sn	17.3	¹³⁸ Cd	7.08	¹³⁸ Cd	10.4
⁸³ Cu	8.42	¹³⁷ Cd	15.3	¹³⁷ Cd	5.49	¹³⁵ Cd	6.97
¹³⁹ Sn	8.19	⁷⁹ Ni	12.5	⁸³ Cu	4.27	¹⁴⁰ Sn	5.97
¹⁴² Sb	5.64	⁸⁰ Ni	12.0	¹³¹ Pd	3.54	¹³⁰ Pd	5.46
¹³⁵ Sn	5.44	¹³⁵ Cd	11.5	⁸² Cu	3.36	⁸³ Cu	5.23
¹³³ Cd	5.38	¹³⁴ Cd	11.5	¹³² Pd	3.12	¹⁴² Sn	4.66
¹⁴⁰ Sb	5.25	¹³⁸ Cd	8.57	¹³⁶ Cd	3.00	¹³⁴ Cd	4.57
¹³⁴ Cd	5.23	¹³² Pd	7.66	¹³⁰ Pd	2.97	¹⁴¹ Sn	4.21
⁸² Cu	4.14	¹³⁰ Pd	7.34	⁸⁶ Zn	2.84	⁸⁶ Zn	3.82
¹³⁴ In	4.14	¹³² In	7.33	¹²⁹ Pd	1.88	¹³³ Cd	3.52
¹³¹ Pd	3.29	¹²⁹ Pd	5.12	⁸⁵ Zn	1.81	¹³² Cd	3.04
¹³⁷ Sn	2.94	¹³⁹ Sn	4.63	¹³⁴ Ag	1.49	¹³⁷ Sn	2.86
¹⁴¹ Sn	2.91	¹³¹ Pd	4.37	¹⁴² Sn	1.42	⁸² Cu	2.63
⁸³ Zn	2.89	¹³⁸ In	3.98	¹³⁵ Ag	1.39	¹³⁸ In	2.47
⁸⁵ Zn	2.71	¹³⁹ In	3.95	¹³⁵ Cd	1.36	¹³⁹ In	2.23
⁸⁵ Cu	2.66	⁸⁶ Zn	3.21	¹³³ Cd	1.10	¹²⁹ Pd	1.95
¹³⁰ Pd	2.39	¹⁴¹ Sn	2.92	¹⁴¹ Sn	1.08	¹³¹ Pd	1.81
¹³² Pd	2.39	⁸⁵ Zn	2.86	¹⁴⁴ Sn	1.07	¹³¹ Ag	1.69

r-process sensitivities...beta-decay rates

J. Cass, G. Passucci, R. Surman, A. Aprahamian

To start... Vary one beta decay rate by an order of magnitude, rerun the simulation, and compare the final abundance pattern to the baseline

White to black = 0-10% change in the final abundance patterns

Beta decay rate sensitivity study

 $\begin{array}{ll} - & \text{baseline} \\ - & \lambda_{\beta}(Z,A) \times 10 \\ - & \lambda_{\beta}(Z,A) \div 10 \end{array}$

summary

We have carried out the first quantitative Nancy Paul comprehensive sensitivity study of an rprocess simulation to masses, beta decay rates, neutron capture cross sections.

- we varied mass models
- we varied decay rates
- consistent set of nuclei that we should measure

Julie Cass Giuseppe Passucci Rebecca Surman A²

Sensitivity Study Masses

Samuel Brett

Sensitivity Study β -decay rates

COLLABORATORS (Experiment)

Notre Dame	MSU		
Mathew Quinn	Jorge Pereira		
Andreas Woehr	Paul Mantica		
Sergio Almaraz	Hendrik Schatz		
Boris Skorodumov	Ana Becerril		
A ²	Thom Elliot		
	Alfredo Estrade		
	Daniel Galaviz		
	Giuseppe Lorusso		
	Milan Matos		
	Fernando Montes		

0

Mainz

Stefan Hennrich Karl-Ludwig Kratz **Bernd Pfeiffer** Ruben Kessler **Florian Schertz**

Univ. of Maryland

W. Walters

Nuclear Structure sensitivities of the r-process

