Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

Chemical tagging and the second r-process NIC - Satellite workshop on r-process nucleosynthesis

Camilla Juul Hansen

Heidelberg University, ZAH, LSW

August 2012

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

- Stellar spectra and abundances
- The importance of atomic data
- What can we learn from stellar abundances
- Observational indications of a 2nd r-process
- A comparison to model yield predictions
- Conclusion

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

- Stellar spectra and abundances
- The importance of atomic data
- What can we learn from stellar abundances
- Observational indications of a 2nd r-process
- A comparison to model yield predictions
- Conclusion

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

- Stellar spectra and abundances
- The importance of atomic data
- What can we learn from stellar abundances
- Observational indications of a 2nd r-process
- A comparison to model yield predictions
- Conclusion

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

- Stellar spectra and abundances
- The importance of atomic data
- What can we learn from stellar abundances
- Observational indications of a 2nd r-process
- A comparison to model yield predictions
- Conclusion

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

- Stellar spectra and abundances
- The importance of atomic data
- What can we learn from stellar abundances
- Observational indications of a 2nd r-process
- A comparison to model yield predictions
- Conclusion

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

- Stellar spectra and abundances
- The importance of atomic data
- What can we learn from stellar abundances
- Observational indications of a 2nd r-process
- A comparison to model yield predictions
- Conclusion

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion

- Stellar spectra and abundances
- The importance of atomic data
- What can we learn from stellar abundances
- Observational indications of a 2nd r-process
- A comparison to model yield predictions
- Conclusion

Camilla Juul Hansen

Spectra and abundances ⊙	log gf ⊖	Stellar abundances 0 0 0	2nd r-process 0 0	Yield predictions 0 0 0	Conclusion 0 0
Stellar spectra 2D to 1D					

Stellar spectra and abundances

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
•					
T I G C C C C C C C C C C	(11)				

Stellar spectra and abundances

$$[Fe/H] \equiv \log(N_{Fe}/N_{H})_{*} - \log(N_{Fe}/N_{H})_{\odot}$$
(1)

Top: Solar ([Fe/H] = 0) spectrum around the Mg triplet. Bottom: Star with $[Fe/H] \sim -5$.

Christlieb et al, 2005

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
	• •				
Oscillator strength					

The importance of atomic data; Abundance - log gf relation

$$\log W = \log(const) + \log(A) + \log(gf\lambda) - \theta\chi - \log(\kappa)$$
 (2)

Hansen et al, 2012

Since the UV-region of the spectra is crowded we have to carry out spectral synthesis on line lists with accurate atomic data.

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
		•			

Abundances from RR lyr stars

What can we learn from stellar abundances

- Observationally derived abundances for most MP RR lyrae
- The groups of elements trace various supernova (SN) features:
- α -elements serve as tracers of SN Mass (Kobayashi et al 06)
- The $\alpha/\text{odd-Z}$ elements provide information on the explosion energy, IMF and SN metallicity
- The amounts of Sc, Ti and Zn are linked to Y_e
- In-/complete Si-burning elements provide clues on the T_{peak}

Hansen et al, 2011a

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
		•			

Abundances from RR lyr stars

What can we learn from stellar abundances

- Observationally derived abundances for most MP RR lyrae
- The groups of elements trace various supernova (SN) features:
- α -elements serve as tracers of SN Mass (Kobayashi et al 06)
- The α /odd-Z elements provide information on the explosion energy, IMF and SN metallicity
- The amounts of Sc, Ti and Zn are linked to Y_e
- In-/complete Si-burning elements provide clues on the T_{peak}

Hansen et al, 2011a

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
		•			
		<u>.</u>			

Abundance star-to-star scatter and the 2nd r-process

What can we learn from stellar abundances

- HD122563 proto LEPP star
- Large star-to-star scatter for n-capture elements (e.g. Sr and Ba)

Cowan et al, 2011 and Hansen et al, 2012

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion			
		•						
Abundance star to star scatter and the 2nd r process								

What can we learn from stellar abundances

- α elements show a very low scatter
- Sr shows a very large scatter

Cayrel et al, 2004 and Hansen et al, 2012

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
		•			
C 1.1					

Correlation - Anticorrelation If two elements are created by the same process, they most likely grow in the same way (correlate). Elements (38 < Z < 50) are generally found to anti-correlate with Z > 56 elements (Burris et al. 2000, Montes et al. 2007, Francois et al 2007)

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Ag - Eu					

Weak s-process elements - Sr (85%) and Y (92%) $_{\rm Arlandini\ et\ al\ 1999}$ $_{\rm Hansen\ et\ al,\ 2012}$

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		

Weak s-process and weak r-process elements - Zr and Pd

Camilla Juul Hansen

Spectra and abundances O O	log gf ○	Stellar abundances O O O O	2ndr-process ○ ● ●	Yield predictions 0 0 0 0	Conclusion 0 0
Ag - Eu					

Main s-process and main r-process elements - Ba (81%) and Eu (94%)

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Summany					

- Ag and Pd correlate they are produced by the same process
- Ag does not correlate with the weak s-process elements; Sr and Y
- Ag does not correlate with Ba (main s-process at solar metallicity)
- Ag strongly anticorrelates with Eu (94% main r-process element; Arlandini et al 1999)
- Ag and Pd both created by the weak r-process
- How can we charactherize this 'weak' r-process

Heidelberg University, ZAH, LSW

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Summary					

- Ag and Pd correlate they are produced by the same process
- Ag does not correlate with the weak s-process elements; Sr and Y
- Ag does not correlate with Ba (main s-process at solar metallicity)
- Ag strongly anticorrelates with Eu (94% main r-process element; Arlandini et al 1999)
- Ag and Pd both created by the weak r-process
- How can we charactherize this 'weak' r-process

Heidelberg University, ZAH, LSW

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Summary					

- Ag and Pd correlate they are produced by the same process
- Ag does not correlate with the weak s-process elements; Sr and $\ensuremath{\mathsf{Y}}$
- Ag does not correlate with Ba (main s-process at solar metallicity)
- Ag strongly anticorrelates with Eu (94% main r-process element; Arlandini et al 1999)
- Ag and Pd both created by the weak r-process
- How can we charactherize this 'weak' r-process

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Summary					

- Ag and Pd correlate they are produced by the same process
- Ag does not correlate with the weak s-process elements; Sr and Y
- Ag does not correlate with Ba (main s-process at solar metallicity)
- Ag strongly anticorrelates with Eu (94% main r-process element; Arlandini et al 1999)
- Ag and Pd both created by the weak r-process
- How can we charactherize this 'weak' r-process

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Summary					

- Ag and Pd correlate they are produced by the same process
- Ag does not correlate with the weak s-process elements; Sr and $\ensuremath{\mathsf{Y}}$
- Ag does not correlate with Ba (main s-process at solar metallicity)
- Ag strongly anticorrelates with Eu (94% main r-process element; Arlandini et al 1999)
- Ag and Pd both created by the weak r-process
- How can we charactherize this 'weak' r-process

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Summary					

- Ag and Pd correlate they are produced by the same process
- Ag does not correlate with the weak s-process elements; Sr and $\ensuremath{\mathsf{Y}}$
- Ag does not correlate with Ba (main s-process at solar metallicity)
- Ag strongly anticorrelates with Eu (94% main r-process element; Arlandini et al 1999)
- Ag and Pd both created by the weak r-process
- How can we charactherize this 'weak' r-process

Heidelberg University, ZAH, LSW

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
			•		
Summary					

- Ag and Pd correlate they are produced by the same process
- Ag does not correlate with the weak s-process elements; Sr and Y
- Ag does not correlate with Ba (main s-process at solar metallicity)
- Ag strongly anticorrelates with Eu (94% main r-process element; Arlandini et al 1999)

Heidelberg University, ZAH, LSW

- Ag and Pd both created by the weak r-process
- How can we charactherize this 'weak' r-process

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
				•	
Vielde					

Pure r-process yields (Hansen et al, 2012)

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
				•	

Yields

A comparison to model yield predictions (Hansen et al. 2012)

- High-Entropy Wind parametrized models with entropy (S), wind velocity (v) and Y_e as free parameters. Farougi et al 2009,2010
- 2D models of Low-mass O-Mg-Ne core collapse SN based on selfconsistent explosion (no free parameters). Wanajo et al 2010,2011

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process 0 0 0	Yield predictions o o o o o	Conclusion 0 0

Yields

r-poor vs r-rich stars: HD122563 & CS31082-001

Camilla Juul Hansen

Heidelberg University, ZAH, LSW

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
				•	
Nº 11					

The r-rich and r-poor stars show patters that require very different conditions from the explosion/environment

Ye = 0.442r-rich 0 [X/Zr] r-poor 50 50 200 250 -3 CS31082-001 HD122563 Sr Zr Ρd Eu Υ Aq Ba Element, X Camilla Juul Hansen Heidelberg University, ZAH, LSW

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process 0 0 0 0	Yield predictions 0 0 0 0	Conclusion ● ○
Summary and conclusion					

- It is important to have NLTE corrections for all abundances when comparing to SN yields, otherwise wrong conclusions on progenitor generation might be drawn (e.g. M and E off)
- A second/weak r-process is needed to produce/explain Ag and Pd
- This process is clearly different from the s-processes and the main r-process
- What is most 'physical'? A span of low Y_e = 0.15-0.3 or high entropies S = 125-275 kB/baryon...
- We need to understand the mixing processes, have 3D self consistent explosions and optimised yields, as well as 3D NLTE corrections for all abundances before we can constrain the early stellar generations and understand the r-processes

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process O O O O	Yield predictions 0 0 0 0	Conclusion O
Summary and conclusion					

- It is important to have NLTE corrections for all abundances when comparing to SN yields, otherwise wrong conclusions on progenitor generation might be drawn (e.g. M and E off)
- A second/weak r-process is needed to produce/explain Ag and Pd
- This process is clearly different from the s-processes and the main r-process
- What is most 'physical'? A span of low Y_e $\,$ 0.15-0.3 or high entropies S $\,$ 125-275 kB/baryon...
- We need to understand the mixing processes, have 3D self consistent explosions and optimised yields, as well as 3D NLTE corrections for all abundances before we can constrain the early stellar generations and understand the r-processes

Heidelberg University, ZAH, LSW

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process 0 0 0	Yield predictions 0 0 0 0	Conclusion ● ○
Summary and conclusion					

- It is important to have NLTE corrections for all abundances when comparing to SN yields, otherwise wrong conclusions on progenitor generation might be drawn (e.g. M and E off)
- A second/weak r-process is needed to produce/explain Ag and Pd
- This process is clearly different from the s-processes and the main r-process
- What is most 'physical'? A span of low Y_e = 0.15-0.3 or high entropies S = 125-275 kB/baryon...
- We need to understand the mixing processes, have 3D self consistent explosions and optimised yields, as well as 3D NLTE corrections for all abundances before we can constrain the early stellar generations and understand the r-processes

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process 0 0 0	Yield predictions 0 0 0 0	Conclusion ● ○
Summary and conclusion					

- It is important to have NLTE corrections for all abundances when comparing to SN yields, otherwise wrong conclusions on progenitor generation might be drawn (e.g. M and E off)
- A second/weak r-process is needed to produce/explain Ag and Pd
- This process is clearly different from the s-processes and the main r-process
- What is most 'physical'? A span of low Y_e $\,$ 0.15-0.3 or high entropies S $\,$ 125-275 kB/baryon...
- We need to understand the mixing processes, have 3D self consistent explosions and optimised yields, as well as 3D NLTE corrections for all abundances before we can constrain the early stellar generations and understand the r-processes

Heidelberg University, ZAH, LSW

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process 0 0 0 0	Yield predictions 0 0 0 0	Conclusion ● ○
Summary and conclusion					

- It is important to have NLTE corrections for all abundances when comparing to SN yields, otherwise wrong conclusions on progenitor generation might be drawn (e.g. M and E off)
- A second/weak r-process is needed to produce/explain Ag and Pd
- This process is clearly different from the s-processes and the main r-process
- What is most 'physical'? A span of low Y_e $\,$ 0.15-0.3 or high entropies S $\,$ 125-275 kB/baryon...
- We need to understand the mixing processes, have 3D self consistent explosions and optimised yields, as well as 3D NLTE corrections for all abundances before we can constrain the early stellar generations and understand the r-processes

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process 0 0 0 0	Yield predictions 0 0 0 0	Conclusion ● ○
Summary and conclusion					

- It is important to have NLTE corrections for all abundances when comparing to SN yields, otherwise wrong conclusions on progenitor generation might be drawn (e.g. M and E off)
- A second/weak r-process is needed to produce/explain Ag and Pd
- This process is clearly different from the s-processes and the main r-process
- What is most 'physical'? A span of low Y_e $\,$ 0.15-0.3 or high entropies S $\,$ 125-275 kB/baryon...
- We need to understand the mixing processes, have 3D self consistent explosions and optimised yields, as well as 3D NLTE corrections for all abundances before we can constrain the early stellar generations and understand the r-processes

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances 0 0	log gf ⊖	Stellar abundances 0 0 0 0	2nd r-process 0 0 0 0	Yield predictions 0 0 0 0	Conclusion ● ○
Summary and conclusion					

- It is important to have NLTE corrections for all abundances when comparing to SN yields, otherwise wrong conclusions on progenitor generation might be drawn (e.g. M and E off)
- A second/weak r-process is needed to produce/explain Ag and Pd
- This process is clearly different from the s-processes and the main r-process
- What is most 'physical'? A span of low Y_e $\,$ 0.15-0.3 or high entropies S $\,$ 125-275 kB/baryon...
- We need to understand the mixing processes, have 3D self consistent explosions and optimised yields, as well as 3D NLTE corrections for all abundances before we can constrain the early stellar generations and understand the r-processes

Heidelberg University, ZAH, LSW

Camilla Juul Hansen

Spectra and abundances	log gf	Stellar abundances	2nd r-process	Yield predictions	Conclusion
					•
Thanks					

A thanks to the organizers and thank you for listening

http://www.hexagonmetrology.com/eso-very-large-telescope-vit-paranal_320.htm Finally thanks to my collaborators: N. Christlieb, F. Primas, B. Leibundgut, K.-L. Kratz, S. Wanajo, H. Hartmann, O. Hallmann, M. Bergemann, B. Nordström, LSW, and SFB 881 for support.

Heidelberg University, ZAH, LSW

Camilla Juul Hansen