First measurement for Halflives of Zn and Ga r-process isotopes

M Madurga University of Tennessee

ORNL support

C. Gross, C. Jost, A.J. Mendes II, D. Stracener

Decay Spectroscopy group

L. Cartegni, R. Grzywacz, A. Kuzniak, D. Miller, S. Padgett, S. Paulauskas, W. Krolas, E. Zganjar, S. Ilyushkin, J. Winger, J.C. Batchelder, S. Liu, M. Wolinska-Cichocka. K. Rykaczewski, K. Miernik, C. Mazzochi, M. Karny, A. Korgul, J.H. Hamilton, N. Brewster, A.V Ramaya, J.K. Hwang

VANDLE colaboration

C. Matei and I. Spassova ORAU; P.D. O'Malley, M. Howard, B. Manning, E. Merino, and J. Cizewski, Rutgers U.; D. Bardayan, ORNL; C. Brune and T. Massey, Ohio U.; F. Raiola, D. Walter, S. Ilyushkin, and F. Sarazin, Colorado School of Mines; J. Blackmon, Louisiana State U

Why beta decay?

Beta decay as a tool to study nuclear properties

Studies possible at low production rates. Very important exploratory role !

Beta decay of neutron rich nuclei

$$\frac{1}{T_{1/2}} = \sum_{E_i \ge 0}^{E_i \le Q_\beta} S_\beta(E_i) \times f(Z, Q_\beta - E_i) \qquad S_\beta(E_i) = \langle \psi_f | \hat{O}_\beta | \psi_{mother} \rangle$$

M. Madurga UTK

Studies of neutron-rich nuclei at HRIBF Production and separation of neutron rich isotopes

"ISOL" technique - intense beam of light ions and thick targets. Effective utilization of the beam and the target material.

but ... ion "so(u)rce(ry)"

Unique HRIBF capability *ISOBAR SEPARATOR !* enables selective studies of ions with given A and Z. Much easier to operate than e.g. laser ion source !

Injector for Radioactive Ion

High Resolution Spectroscopy: the Clover Array for Radioactive Decay Studies

- Radioactive species implanted in moving tape collector
- Gamma-ray detection: 4 HPGe,
 ε= 6% at 1 MeV
- Beta detection: 2 plastic scintillators, ε=60 %

Half-lives in the vicinity of ⁷⁸Ni

- ➤Z=28 N=50 shell closures
- ➢Progenitors of r-process nuclei
- Beta decay between different parity subshells:
 - First forbidden transitions play a fundamental role in the half life

"Speeding-up the classical r-process" P.Moeller et al. Phys. Rev. C 67, 055802 (2003)

E, (KeV)

Benchmarking theoretical predictions: Zn half-lives

New calculated half-lives for spherical nuclei effect on r-process abundances

β-decay in hot r-process

Beta decay rate sensitivity study

J. Cass, G. Passucci, R. Surman, A. Aprahamian

Predicting neutron branching ratios

PHYSICAL REVIEW C 67, 055802 (2003)

Peter Möller Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

VANDLE at LeRIBSS:

The Versatile Array for Neutron Detection at Low Energies

- > 2 clovers, 3% efficient @ 1MeV
- > 48 x 60 cm VANDLE bars
 - 45% efficiency/bar @ 1MeV
 - Ω = 26% of 4π
 - 12% total efficiency @ 1MeV
- Fully instrumented using XIA's Pixie
 16 digitizers

More details in talks by W.A. Peters and S.V. Paulauskas

The Versatile Array of Neutron Detectors at Low Energy Beta-delayed neutron emitters near r-process path studied at the HRIBF/LeRIBSS in February 2012

Light output vs Time of Flight: Neutron gate

February 2012 VANDLE highlights: ⁷⁷Cu

- Gammow-Teller decays at 0.5 and 2 MeV above Sn
- 100 keV neutrons detected!
- ~70 keV neutrons?
- Level 50 keV above Sn previously observed @ LeRIBSS

S.V Ilyushkin et al. PRC 80, 054304 (2009)

February 2012 VANDLE highlights: Resonant decay of ⁸⁴Ga

Counts / 0.5 ns

¹⁰⁰Rb at LeRIBSS:

neutron emission populates rotational bands

- 4 new half-lives of r-process relevant nuclei. Validation of new theoretical model of beta-decay in the 78Ni region. Profound influence on beta decay rates
- IRIS 2 commission great success! Clean, high intensity high quality data. <u>Laser Ion Source commissioned:</u> <u>Observation of ⁸⁶Ga</u>

Neutron spectroscopy: low energy states in ⁷⁷Cu, giant resonance in ⁸⁴Ga, population of rotational bands in ¹⁰⁰Rb beta decay

Outlook: Experiment proposed at NSLC, Lol approved at TRIUMF

Segmented

- 2 HPGe clovers
- 48 VANDLE bars = 12% efficient @ 1 MeV
- New segmented plastic implantation detector (R. Grzywacz and M. Al-Shudifat)

