PT3: ps – fs Electron and Photon beams Subtopic - Ultra fast pulse diagnostic.

speaker: M. Gensch

AG Coherent THz Radiation

HZDR

- Laser induced radiation & synchronization
- **Ultra-fast pulse diagnostics**
- → III (Coh.) photon radiation & interaction

Il Ultra-fast pulse diagnostics

what?	who?	related to
EO techn.	DESY, HZDR, KIT, HZB? (PSI)	inacs
Lasers (EO)	DESY, KIT (PSI)	Jucting III.
HEBs	KIT, HZB (PTB)	III
Streaking?	DESY SULUTE SUL	I
ORS	DESY (O')/HZB/HZDR (I) ostic kholm, Uppsala)	->PT4
(THz) transport?	all all	III
EO techn. Lasers (EO) HEBs Streaking? ORS (THz) transport? HiRes/fast sprocus on technology.	DESY, HZB, HZDR, KIT	III

Focussing within the ARD intiative

- > Improve performance of linac-based photon sources
- Establish electron bunch diagnostic for future SRF electron accelerators in the HGF (-> PT1)
- Form collaborations around appropriate "test" facilities for new diagnostic concepts

existing multi-institutional approach-low alpha storage rings

potential upgrade with "seeded microstructures"

potential upgrade to variable pulse length storage ring?

existing multi-institutional approach—low alpha storage rings

potential upgrade with "seeded microstructures"

M. Gensch GSI, 21.11.2011

potential upgrade to variable pulse length storage ring?

existing multi-institutional approach—low alpha storage rings

Hot electron bolometer, electronics and diagnostic methods (KIT, HZB, PTB, DLR, TUDo, TUB, UBo)

- FIR detector system with sub 100 ps rise time has been developed
- > allows to resolve individual bunches in multi bunch filling
- influence of filling pattern can be studied

Goal: improvement of photon source properties (beyond orginal design)

-> diagnostic & feedbacks essential!

- **Electron bunch form**
- **Electron bunch arrival time**
- X-ray/THz pulse form
- X-ray/THz arrival time
- -> preferable non invasive and suitable for feedbacks

Techniques for fs diagnostic:

electrons: transverse deflecting cavity, BAM, BCM, electro-optic sampling, THz frequency analysis, optical replica synthesizer,....

THZ: spectroscopy (FTIR, grating & time-domain), electro-optic sampling

X-rays: autocorrelators, crosscorelators, photoelectron streaking, optical afterburner...

electrons: transverse deflecting cavity, BAM, BCM, electro-optic sampling, THz frequency analysis, optical replica synthesizer,....

THz: spectroscopy (FTIR, grating & time-domain), electro-optic sampling

X-rays: autocorrelators, crosscorrelators, photoelectron streaking, optical afterburner...

X-ray FELs/coherent THz source userfacility

- advanced single pulse/high charge diagnostic in routine operation
- > primarily high charge (> 100 pC) interested in long pulse train/low charge diagnostic

ELBE:

low charge/long pulse train ps diagnostic in operation (ELBE) interested in fs diagnostic for low and high charge + interest în advanced diagnostic for long pulse trains/cw

electrons: transverse deflecting cavity, BAM, BCM, electro-optic sampling, THz frequency analysis, optical replica synthesizer.....

THz: spectroscopy (FTIR, grating & time-domain), electro-optic sampling

X-rays: autocorrelators, crosscorrelators, photoelectron streaking, optical afterburner...

X-ray FELs/coherent THz source userfacility

- advanced single pulse/high charge diagnostic in routine operation
- > primarily high charge (> 100 pC) interested in long pulse train/low charge diagnostic

focus on noninvasive techniques suitable for "quasi" cw SRF accelerators

ELBE:

low charge/long pulse train ps diagnostic in operation (ELBE) interested in fs diagnostic for low and high charge + interest în advanced diagnostic for long pulse trains/cw

fs diagnostic in electron linacs: - multi institutional approach

electrons: transverse deflecting cavity, BAM, BCM, electro-optic sampling, THz frequency analysis, optical replica synthesizer,....

THZ: spectroscopy (FTIR, grating & time-domain), electro-optic sampling

X-rays: autocorrelators, crosscorrelators, Photoelectron streaking, optical afterburner...

X-ray FELs/coherent THz source userfacility

- advanced single pulse diagnostic in routine operation
- > primarily high charge (> 100 pC) interested in long pulse train/low charge diagnostic

FLUTE

ideal "test" bed for high charge single bunch diagnostic

ELBE/TELBE:

ideal "test" bed for low-high charge, single - macrobunch - cw bunch train diagnostic

focus on noninvasive techniques suitable for "quasi" cw SRF accelerators

fs e-bunch diagnostic: coherent THz frequency analysis

Example: Multi-channel THz and IR spectrometer (DESY) -> transfer to other interested facilities (e.g. HZDR, KIT, ...)

principle:

using variable delay -> mean bunch properties:

future developments:

- design more robust monitors
- optimize time resolution
- increase sensitivity for low charge diagnostic
- utilize for feedbacks (slow & fast)

single pulse diagnostic: e.g. spectral decoding

principle:

future developments:

- design more robust monitors
- optimize time resolution
- increase sensitivity for low charge diagnostic
- utilize for feedbacks (slow & fast)

principle:

future developments:

- design more robust monitors
- optimize time resolution
- increase sensitivity for low charge diagnostic
- utilize for feedbacks (slow & fast)

custom made Yb-Fiber laser system for EO monitors (DESY, KIT, PSI) -> transfer to HZDR/HZB

- > Oscillator with free space dispersion compensation
- > Breathing system → pulse duration > fourier limit
- > Non-linear amplifier to increase pulse power and bandwidth

principle:

existing challenges:

- design more robust monitors
- optimize time resolution
- increase sensitivity for low charge diagnostic
- utilize for feedbacks (slow & fast)

HELMHOLTZ

GEMEINSCHAFT

can serve as monitor for electron bunch form

& arrival time (DESY, FOM, Daresbury + Univ.)

Development of concepts for E/O based feedback at high reprate accelerators (DESY, HZDR) -> transfer to HZB, KIT

example: concept for cw e/o monitor

- measurement of sub pico-coulomb charges
- suitable for slow feedback
- far goal is fast feedback and single bunch /pulse diagnostic at high rep rates (KHz MHz)

Development of concepts for E/O based feedback at high rep rate accelerators (DESY, HZDR) -> transfer to HZB, KIT

far goal is fast feedback and single bunch /pulse diagnostic at high rep rates (KHz – MHz)

Test beam for high rep-rate fs – electron bunch trains @ HZDR -> open for interested HGF institutes

Test beam for high rep-rate fs – electron bunch trains @ HZDR -> open for interested HGF institutes

Focussing within the ARD intiative

- > Improve performance of linac-based photon sources
- Establish electron bunch diagnostic for future high reprate SRF accelerators in the HGF (PT1)
- Form collaborations around appropriate test facilities for new diagnostic concepts

fs diagnostic in electron linacs: - multi institutional approach

first hand experience & exchange of expertise example: DESY & HZDR

Topics:

- electron beam dynamics
- electron bunch diagnostics
- THz pulse diagnostic
- X-ray pulse diagnostic
- synchronization/timing

prototype monitors for arrrival time + form of X-rays and e- bunches

01/2011 - 11/2011;

- participation in more than 25 shifts
 @ ELBE and FLASH
- several joint publications & conf. contribut.

Cooperation agreement: will be signed in 2011

prototype monitor for electron bunch form and arrival time in cw linacs

fs diagnostic in electron linacs: - multi institutional approach

Thank You for the attention

