Accelerator Research and Development ARD Topic 4: Novel Techniques for High Gradient Acceleration

Coordination: U. Schramm, HZDR, Dresden

F. Grüner, DESY, Hamburg

Accelerator Research and Development ARD **Topic 4:** Novel Techniques for High Gradient Acceleration

Motivation: Ultrahigh gradients in principle allow for

- unprecedented energy scales

- compact accelerators and light sources

- intrinsic fs-scale synchronization

Technology / Idea: Plasma (wave) based acceleration either

- laser driven or - particle beam driven

Goals are significantly different from Top 1-3 as

- full understanding of the underlying physics is an issue
- and simultaneously the demonstration of a reasonable degree of maturity is mandatory

Accelerator Research and Development ARD **Topic 4:** Novel Techniques for High Gradient Acceleration

Motivation: Ultrahigh gradients in principle allow for

- unprecedented energy scales

- compact accelerators and light sources

- intrinsic fs-scale synchronization

Technology / Idea: Plasma (wave) based acceleration either

- laser driven or - particle beam driven

Topic 4: Novel Techniques for High Gradient Acceleration Players and infrastructure

PHELIX Glass laser 0.3 PW, 150 J, 500 fs

200TW Ti:Sa project Electron drivers!

Draco Ti:Sa laser 150TW, 4.5 J, 30 fs

PENELOPE DPSSL project 1 PW, 150 J, 150 fs

Topic 4: Novel Techniques for High Gradient Acceleration *Players and infrastructure*

Topic 4: Novel Techniques for High Gradient Acceleration *Players and infrastructure*

Topic 4: Novel Techniques for High Gradient Acceleration *Players and infrastructure / networking*

Laser Ion Acceleration Status and collaborative tasks

- Increase of maximum energies above few 10 MeV
- Spectral shaping (mono-energetic beams)
- Spatial control and transport
- Shot-to-shot stability

novel concepts, targetry next generation lasers

- Combination with conventional structures
- Applications (e.g. medical)

two examples for collaborative work within ARD requiring a high level of maturity

Status and tasks - Particle Energy

Laser-Driven Proton Injector / LIGHT

HI-Jena: interface between laser-based and conv. accelerators: LIGHT-collaboration ("Laser-Ion-Generation, Handling and Transport")

HI-Jena:

- project coordination,
- 100-TW compressor,
- laser and ion beam diagnostics,

GSI:

- PHELIX laser, timing, control system,
- beam lines, accel. structures,
- · beam diagnostics

TU-Darmstadt:

- · acceleration experiments,
- · collimation simulations,
- target development

HZDR:

solenoid for collimation

Univ. Frankfurt:

accel. structure development

Particle Energy improvement - spectral shaping

Test and validate Radiation Pressure Acceleration @ JETI

and POLARIS ⇒ transfer to ARD partners

Requirements for RPA:

- •ultra thin multi-species foils: (15±1) nm,
- ultra-high contrast pulses: plasma mirror,
- circular polarization:novel all-reflective approach

Particle Energy improvement - spectral shaping

New dielectric multilayer coating:

pol.-dependent reflection

•high reflectivity: R > 98%,

•homogeneous phase-shift over broad bandwidth: $\Delta \lambda = 80$ nm,

•high ellipticity: $\varepsilon_{PSM} = (98.3 \pm 0.6)$ %,

•high damage threshold: 5×10¹² W/cm²,

•scalable: up to $\emptyset = 700 \text{ mm}$

Ion acceleration - spatial shaping and transport

 Simulations on the coupling of laseraccelerated ions into conventional accelerator structures (Uni Frankfurt)

Experimental test (HZDR, GSI)

Stack located 405 mm downstream

Ion acceleration - spatial shaping and transport

Recent results in engineering laser spots (GSI)

Joint activities in Droplet target implementation (H₂O, H₂, D₂), (R. Grisenti, GSI, Uni Frankfurt, GSI, HIJ)

Target expertise

Target expertise

DLC and other thin targets down to 3 nm thickness shaped targets (in combination with thin foils) layered (density structured) targets

Laser-Ion Acceleration for biomedical studies

- Efficient acceleration with nanometer thin diamond-like carbon foils (100x more ions compared to μm targets)
- 1 ns proton pulses for high dose cell experiments (9 Gy in 1 ns) at 5.2 MeV

Laser-Ion Acceleration for biomedical studies

Requirements for cell irradiation experiments

- Proton energies >5 MeV
- Dose rates of Gy/min between 0.1 and 10 Gy (pulse dose / stability)
- Energy filtering / transport (radiation protection)
- Online and absolute offline dosimetry
- Homogeneous irradiation
- Sample size ~cm2
- Cell irradiation in air

(Faraday-cup, RCFstacks, cell samples)

Stability requirements with respect to dose

- first experiment with reliable dose & dose uncertainties
- about 4500 fully controlled and monitored shots

Preliminary results ...

Similar experiments in Munich, HIJ and at GSI

Within HGF: 3(4) centers involved,

operating and building 4(6) lasers with >100TW power,

all with broad accelerator expertise

Universities: 2(4) operating >100TW systems, long term experience

Added ARD value: - combining the expertise of individual research teams

(usually competing) for joint larger scale approaches

- triggering novel (joint) projects

Thanks to V. Bagnoud, M. Kaluza, M. Roth, J. Schreiber

