

PT-1: Superconducting RF: Enabling Technology for Future Accelerators

J. KNOBLOCH (HZB) FOR THE PT-1 GROUP (DESY, HZB, HZDR, GSI)

SRF: Enabling technology for future accelerators

Advantage SRF: Nb ≈ 10⁶ fewer losses than Cu → vital consequences!

Energy efficient operation

- Low dynamic losses
- Efficient conversion of wall-plug power to beam power (even when including cryopower)

Cavity design not dominated by RF losses → more freedom

- Flexibility to adapt cavity design to match application requirements
- E.g., large aperture designs possible
 - o Simple HOM damping possible (wakefield minimization!) for high-current operation
 - Large acceptance to avoid beam intercept/activation

Nb B-Factory Cavity KEK-B

SRF: Enabling technology for future accelerators

CW (or long pulse) operation possible at high field:

CW/long pulse = stability

- System is in "equilibrium"
- Feedback can be implemented

CW/long pulse = High average current at moderate bunch charge

- Avoids non-linear effects (e.g., space charge), reduced wakefield issues ...
- Simpler signal recording without detector pile up
- Limit "sample" damage
- ...

CW/long pulse = Flexibility to adapt to application requirements

- E.g., Imaging
- Spectroscopy in highest magnetic fields (ms pulses)
- Cavity FELs (including X-ray)
- Spallation sources
- High-rep rate pump probe
- Use powerful signal processing techniques developed for CW systems (e.g., lockin systems)

SRF Application examples

High-rep rate LINACs: Beam quality + flexible bunch manipulation

Bremsstrahlung

X-rays

E.g.: Intense THz Production: TBONE@KIT

- E.g.: tunable X-ray FEL oscillator
 - o Order 5 GeV electron beam
 - MHz rep rate
 - ∘ Bunch length = 0.1 ps, emittance = 0.3 mm mrad
 - o Tunable, multi-keV X-rays out
 - o Full trans/long. coherence
 - Bandwidth in meV range

SRF Application examples

ERLs: Storage-ring-level currents with LINAC-level beam properties

- Recover beam energy in second pass through linac before dumping beam
- Relies on:
 - High efficiency of SRF systems for efficient energy recovery
 - Heavy HOM damping of SRF systems to avoid beam instabilities
 - Appropriate electron source

E.g., for 4th generation x-ray light sources

- Flux as in 3rd gen. storage rings
- Greater brilliance and brightness
- Pulse length control
- Low energy spread

ERL Applications: Industrial

UV light source for Next-Generation Lithography (beyond 193 nm)

- 13.5 nm (6.5 nm), 100's W flux required. Planned plasma sources fail to match requirements.
- LINAC (< 1 GeV MeV) driven light source is an option
- FLASH-type machine provides required flux but:
 - Lithography requires beam rastering and very precise average power per point
 - Pulse-train structure complicates matter
 - Expensive and large
- CW, recirculating LINAC may prove to be a better option

Future EUV source (13.5nm \rightarrow 6.5nm) for next generation lithography

ERL applications

E.g., for compact gamma-ray Compton Sources

- Require ultra-low emittance (0.1 mm mrad) for narrow energy spread
- High average current

E.g., for nuclear physics (hadron-electron colliders), LHeC, eRHIC

Storage ring applications

8/28

E.g., Bunch-length manipulation via crab cavities (ANL)

E.g., Flexible bunch-lengths via overvoltage

- Requires high-voltage CW cavities operating at several frequencies
- Low impedance, heavily damped systems to avoid instabilities

High-power proton/ion accelerators

ELBE: Fully CW accelerator, including SRF Photoinjector

- Photon science, neutron science
- Both CW and pulsed modes are offered, <u>but for FEL operation only 10%</u> <u>demand for pulsed mode</u> → <u>Illustrates attractiveness of CW</u>

Upgrade in process

FLASH/FLASH II

- Currently pulsed, ca. 1% DF with 1 MHz rep rate in the pulse
- Efforts under way to enable fully CW operation
 - Demands operation at lower energy
 - Demands lowest emittance to still achieve saturation

Under construction @DESY: XFEL

• Tunnel ready for infrastructure installation Feb. 2012

Approved: BERLinPro

In the application or planning stage:

- CW SRF LINAC for ions (GSI), on HGF Roadmap
- TBONE (PT-3, KIT), on HGF Roadmap
- BESSY VSR (PT-3, HZB)
- ESS-S (several HGF labs associated)

ESS-S

Germany: World leader in SRF activities

Four Helmholtz Centers pursue SRF Development

- DESY: Long-pulse systems, XFEL, ILC, extensive infrastructure
- HZDR: SRF Photoinjector for moderate currents, ELBE
- HZB: CW SRF systems, Testing infrastructure, BERLinPro
- GSI: Development of structures for ion accelerators

Germany: World leader in SRF activities

Four Helmholtz Centers pursue SRF Development

- DESY: Long-pulse systems, XFEL, ILC, extensive infrastructure
- HZDR: SRF Photoinjector for moderate currents, ELBE
- HZB: CW SRF systems, Testing infrastructure, BERLinPro
- GSI: Development of structures for ion accelerators

Universities

- TU-Darmstadt: S-DALINAC, first operating SRF Accelerator in Germany
- Universität Frankfurt: Structures for Ion Accelerators

Germany: World leader in SRF activities

ARD

Four Helmholtz Centers pursue SRF Development

- DESY: Long-pulse systems, XFEL, ILC, extensive infrastructure
- HZDR: SRF Photoinjector for moderate currents, ELBE
- HZB: CW SRF systems, Testing infrastructure, BERLinPro
- GSI: Development of structures for ion accelerators

CH Structure for Frankfurt U.

ELBE-style module, Cavity from DESY, Cryostat design from HZDR

Universities

- TU-Darmstadt: S-DALINAC, first SRF Accelerator in Germany
- Universität Frankfurt: Structures for Ion Accelerators

Industry

 Research Instruments, world leading supplier of SRF structures/turn key systems

Challenges for the future

SRF works, amply demonstrated!

Next generation systems require:

- significantly more current (orders of magnitude)
- significantly lower dynamic losses (at least factor 3)
- More stable/reliable/precise (e.g., emittance) operation
- significantly reduced cost
 - cavity production
 - o ancillary components
 - RF systems (invest and operating)

Many challenges are common to different applications

- E.g., Cavity designs for high-current LINACs can find application in storage rings
- E.g., low-dynamic-loss systems are vital for large LINACs but benefit turn-key compact systems.

Challenges for the future: Sources

High-current CW electron beams at lowest emittance requires:

- Low power dissipation for CW
- High-rep rate, short-pulse emission control
- High field and high voltage (→ high power)
- Stability in beam parameters
- Long life time

SRF photoinjectors have most potential.

SRF Photoinjector development at HZB with DESY, JLAB and Soltan Inst. of Nucl. Studies

Challenges for the future: Structure design

High-current applications require new structure designs

• High current (100 mA – Amperes) requires "nearly-HOM-free" designs

JLAB

Challenges for the future: Structure design

Ion Accelerators: New structures for high current CW systems

- CH Structures for use in GSI's CW SRF Linac project
- Application in other ion machines

Spoke resonators

Spoke cavities for large range of β

Project X, FNAL

J. Delayen, *Proc. LINAC 2010*

EUROTRANS

Ion structures meet electrons

To enable 4-K operation consider using spoke cavities for electrons

Could be of interest for "industrial" applications that want to avoid 2-K operation.

Figure 16: Layout of the MIT reverse Compton Source.

J. Delayen, Proc. LINAC 2010

Challenges for the future: Dynamic Losses

CW GeV LINACs require cryogenic capacities in the multi-kW range

• Costly cryogenic plant, can be of order 20% of total linac cost

Compact Sources (100's MeV range) require cryogenic capacities in the 100's W range

Often prohibitive in size/cost and operation for industrial applications

Power dissipation in SRF cavities

Flux trapping in different

Understand why niobium does not achieve the theoretical losses

 $B_{\rm trapped} \left[\mu T \right]$

- Understanding flux trapping
- Role of cooldown conditions, thermocurrents
- Impurities ...

Develop new materials

: More details

 $\begin{array}{c} \text{sample 2} \\ \text{sample 3} \\ \text{sample 4} \\ \text{sample 5} \\ \text{sample 6} \\ \end{array}$ $\begin{array}{c} \text{Nb samples} \\ \text{S. Aull et al., } \textit{Proc.} \\ \textit{SRF 2011 \& PRST-AB} \\ \text{(to be subm.)} \\ \end{array}$

High efficiency RF

A large portion of wall-plug power is not converted to beam power

- Efficient transmitters, e.g., IOT or solid state amplifiers
- Learn how to power several cavities with one, larger transmitter.
- Efficient use of RF power: Minimizing external noise sources (e.g., microphonics) through passive and active means. In this example: more than ×4 in installed RF power savings

 $\label{eq:microphonic detuning in CW-TESLA cavities measured at HoBiCaT, HZB} \\$

A. Neumann et al., *PRST-AB* **13**, **0**82001 (2010)

Required RF power for CW-TESLA cavities for different detuning (@ ca. 17.4 MV)

PT-1 Goals: Solving the challenges for NG-SRF Accelerators

Structure design

- Electron accelerators: > 100 mA L-Band system, heavily HOM damped (HZB)
- Ion accelerators: CH Structure for low-beta acceleration of ions (GSI)

RF systems

- Efficient CW RF systems for LINACs (DESY, HZB)
- CW LLRF and microphonics compensation, vectorsum operation of narrow-bandwidth systems (DESY, HZB)

Cryogenic losses

- Understanding and reducing losses in niobium (DESY, HZB)
- New SRF materials (DESY, HZB)

Electron sources

High-current SRF photoinjector system (HZDR, HZB)

Combine these for a complete CW SRF system for use in high-current machines

Goal: CW SRF Systems with many applications

Develop generic CW/long-pulse technology for various applications

- Combine features in a CW System that has broad applicability
- E.g., high-current cavity module with
 - Low power dissipation
 - o Optimized RF system for narrow bandwidth
 - Heavy HOM damping for high current operation

0 ...

Goal: CW SRF Systems with many applications

Development of SRF injectors for CW LINACs

- High current
- Low emittance

FLASH operating CW?

Figure 16: Layout of the MIT reverse Compton Source 7/28 J. Delayen, *Proc. LINAC 2010*

Goal: Ion structures for CW applications

GSI Superconducting CW LINAC

Thank you for help in compiling this talk

Winfried Barth (GSI)

Andreas Jankowiak (HZB)

Oliver Kugeler (HZB)

Peter Michel (HZDR)

Anke-Susanne Müller (KIT)

Axel Neuman (HZB)

Hans Weise (DESY)