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ARD 
SRF: Enabling technology for future accelerators 

Advantage SRF: Nb ≈ 106 fewer losses than Cu à vital consequences! 

Energy efficient operation  
• Low dynamic losses  
• Efficient conversion of wall-plug power to beam power (even when including 

cryopower) 
Cavity design not dominated by RF losses à more freedom 
• Flexibility to adapt cavity design to match application requirements 
• E.g., large aperture designs possible 
o  Simple HOM damping possible (wakefield minimization!) for high-current operation 
o  Large acceptance to avoid beam intercept/activation  
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Beam 

Cu B-Factory Cavity 
PEP-II 

Nb B-Factory Cavity 
KEK-B 
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SRF: Enabling technology for future accelerators 

CW (or long pulse) operation possible at high field: 
 

CW/long pulse = stability 
• System is in “equilibrium” 
• Feedback can be implemented 

CW/long pulse = High average current at moderate bunch charge 
• Avoids non-linear effects (e.g., space charge), reduced wakefield issues … 
• Simpler signal recording without detector pile up 
• Limit “sample” damage 
• … 

 
CW/long pulse = Flexibility to adapt to application requirements 
• E.g., Imaging  
• Spectroscopy in highest magnetic fields (ms pulses) 
• Cavity FELs (including X-ray) 
• Spallation sources 
• High-rep rate pump probe 
• Use powerful signal processing techniques developed for CW systems (e.g., lock-

in systems) 
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SRF Application examples 

High-rep rate LINACs: Beam quality + flexible bunch manipulation 
• E.g.: Intense THz Production: TBONE@KIT 

o  100 MeV, short pulses 
o  10 MHz rep rate, 100 pC charge 
o  Several MW peak power 

• E.g.: tunable X-ray FEL oscillator 
o  Order 5 GeV electron beam 
o  MHz rep rate 
o  Bunch length = 0.1 ps, emittance = 0.3 mm mrad 
o  Tunable, multi-keV X-rays out 
o  Full trans/long. coherence 
o  Bandwidth in meV range 

 

Few MHz rep. rate 

Courtesy Kwang-je Kim, ANL 
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SRF Application examples 

ERLs: Storage-ring-level currents with LINAC-level beam properties 
• Recover beam energy in second pass through linac before dumping beam 
• Relies on: 
o  High efficiency of SRF systems for efficient energy recovery 
o  Heavy HOM damping of SRF systems to avoid beam instabilities 
o  Appropriate electron source 

 
E.g., for 4th generation x-ray light sources 
• Flux as in 3rd gen. storage rings 
• Greater brilliance and brightness 
• Pulse length control 
• Low energy spread 

Proposal Cornell University 5/28 
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ERL Applications: Industrial 

UV light source for Next-Generation Lithography (beyond 193 nm) 
• 13.5 nm (6.5 nm), 100‘s W flux required.  Planned plasma sources fail to 

match requirements. 
• LINAC (< 1 GeV MeV) driven light source is an option 
• FLASH-type machine provides required flux but: 
o  Lithography requires beam rastering and very precise average power per point 
o  Pulse-train structure complicates matter 
o  Expensive and large 

• CW, recirculating LINAC may prove to be a better option 

6/28 

 Future EUV source (13.5nm → 6.5nm) for next generation lithography 

^C 

Compact 13.5nm FEL for extreme uv-lithography 
Y. Socol et al., PRST-AB, 14, 040702 (2011) E~1GeV, I~10mA, εnorm~1	
  mm	
  mrad 

Linac energy ≈ 250 MeV (each) 
Beam current ≈ 10 mA 
Output in EUV ≈ kW 
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V. Litvinenko 
BNL 

ERL applications 

E.g., for compact gamma-ray Compton Sources  
• Require ultra-low emittance (0.1 mm mrad) for narrow energy spread  
• High average current 

E.g., for nuclear physics (hadron-electron colliders), LHeC, eRHIC 
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Storage ring applications 

E.g., Bunch-length manipulation via crab cavities (ANL) 

 
E.g., Flexible bunch-lengths via overvoltage 
• Requires high-voltage CW cavities operating at several frequencies 
• Low impedance, heavily damped systems to avoid instabilities 
• Long and short bunches possible simultaneously 
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APS, Argonne 

BESSYVSR 

BESSYVSR concept for BESSY II 

1.5 GHz       1.75 GHz 

K. Harkay et al., Proc. PAC 2005 

G. Wüstefeld et al., Proc. IPAC 2010 
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High-power proton/ion accelerators 
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FRIB 
Michigan St. Univ. 
> 200 MeV/u, 400 kW 

Rare Isotope Beams 

ESS-S 
2.5 GeV, 50 mA, 5 MW 

M. Eshraqi et al., Proc. IPAC 2010 Spallation Neutrons 

2.4 MW 
Nucl. Waste Transmutation 
J. Delayen, Proc. LINAC 2010 

Courtesy R. York, MSU 
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SRF Accelerators in the Helmholtz Association 

ELBE:  Fully CW accelerator, including SRF Photoinjector 
• Photon science, neutron science 
• Both CW and pulsed modes are offered, but for FEL operation only 10% 

demand for pulsed mode à Illustrates attractiveness of CW 
• Upgrade in process 
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SRF Accelerators in the Helmholtz Association 

FLASH/FLASH II 
• Currently pulsed, ca. 1% DF with 1 MHz rep rate in the pulse 
• Efforts under way to enable fully CW operation 
o  Demands operation at lower energy 
o  Demands lowest emittance to still achieve saturation 
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J. Jankowiak et al., Proc. LINAC 2010 

SRF Accelerators in the Helmholtz Association 

Under construction @DESY : XFEL 
• Tunnel ready for infrastructure installation Feb. 2012 

 
 
 
 
 
 
 
 
 
Approved: BERLinPro 
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BESSYVSR 

SRF Accelerators in the Helmholtz Association 

In the application or planning stage: 
• CW SRF LINAC for ions (GSI), on HGF Roadmap 
• TBONE (PT-3, KIT), on HGF Roadmap 
• BESSY VSR (PT-3, HZB) 
• ESS-S (several HGF labs associated) 
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TBONE 

ESS-S 

BESSYVSR 

G. Wüstefeld et al., Proc. IPAC 2010 

CW-LINAC 
F. Dziuba et al., 
PRST-AB 13 
041302 (2010) 
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Germany: World leader in SRF activities 

Four Helmholtz Centers pursue SRF Development 
• DESY: Long-pulse systems, XFEL, ILC, extensive infrastructure 
• HZDR: SRF Photoinjector for moderate currents, ELBE 
• HZB: CW SRF systems, Testing infrastructure, BERLinPro 
• GSI: Development of structures for ion accelerators 
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ARD 
Germany: World leader in SRF activities 

Four Helmholtz Centers pursue SRF Development 
• DESY: Long-pulse systems, XFEL, ILC, extensive infrastructure 
• HZDR: SRF Photoinjector for moderate currents, ELBE 
• HZB: CW SRF systems, Testing infrastructure, BERLinPro 
• GSI: Development of structures for ion accelerators 

Universities 
• TU-Darmstadt: S-DALINAC, first operating SRF Accelerator in Germany 
• Universität Frankfurt: Structures for Ion Accelerators 
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Germany: World leader in SRF activities 

Four Helmholtz Centers pursue SRF Development 
• DESY: Long-pulse systems, XFEL, ILC, extensive infrastructure 
• HZDR: SRF Photoinjector for moderate currents, ELBE 
• HZB: CW SRF systems, Testing infrastructure, BERLinPro 
• GSI: Development of structures for ion accelerators 

Universities 
• TU-Darmstadt: S-DALINAC, first SRF Accelerator in Germany 
• Universität Frankfurt: Structures for Ion Accelerators 

Industry 
• Research Instruments, world leading supplier of SRF structures/turn key 

systems 
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500 MHz for 3rd gen.  
light sources 

ELBE-style module,  
Cavity from DESY,  
Cryostat design from HZDR 

CH Structure for  
Frankfurt U. 
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Challenges for the future 

SRF works, amply demonstrated! 
 
 
 
 
 
 
 
 
 
Next generation systems require: 
• significantly more current (orders of magnitude) 
• significantly lower dynamic losses (at least factor 3) 
• More stable/reliable/precise (e.g., emittance) operation 
• significantly reduced cost 

o  cavity production 
o  ancillary components 
o  RF systems (invest and operating) 

Many challenges are common to different applications 
• E.g., Cavity designs for high-current LINACs can find application in storage rings 
• E.g., low-dynamic-loss systems are vital for large LINACs but benefit turn-key 

compact systems. 
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FLASH@DESY 

SNS@ORNL 

CEBAF@JLAB ISAC II@TRIUMF 
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Challenges for the future: Sources 

High-current CW electron beams at lowest emittance requires: 
• Low power dissipation for CW 
• High-rep rate, short-pulse emission control 
• High field and high voltage (à high power) 
• Stability in beam parameters 
• Long life time 
• Challenge: Improvement in current by ×100 and emittance ÷10 required 

SRF photoinjectors have 
most potential. 

SRF Photoinjector @ HZDR 
SRF Photoinjector development at HZB with 
DESY, JLAB and Soltan Inst. of Nucl. Studies 18/28 
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JLAB 

Challenges for the future: Structure design 

High-current applications require new structure designs 
• High current (100 mA – Amperes) requires “nearly-HOM-free” designs  

• High current requires efficient HOM damping 

Trapped modes 
problematic 

E. Johnson et al., BNL 
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M. Liepe et al., Cornell University 

BNL ERL Cavity 
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J. Delayen, Proc. LINAC 2010 

Challenges for the future: Structure design 

Ion Accelerators:  New structures for high current CW systems 
• CH Structures for use in GSI’s CW SRF Linac project 
• Application in other ion machines 

 

• Spoke resonators 
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Project X, FNAL 

Spoke cavities for large range of β  

EUROTRANS 
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Ion structures meet electrons 

21/28 

To enable 4-K operation consider using spoke cavities for electrons 
• Could be of interest for “industrial” applications that want to avoid 2-K 

operation. 

β = 1 Spoke cavities  

J. Delayen, Proc. LINAC 2010 
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Challenges for the future: Dynamic Losses 

CW GeV LINACs require cryogenic capacities in the multi-kW range 
• Costly cryogenic plant, can be of order 20% of total linac cost 

Compact Sources (100’s MeV range) require cryogenic capacities in 
the 100’s W range 

• Often prohibitive in size/cost and operation for industrial applications 
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kW’s 100’s W 10’s W 
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Power dissipation in SRF cavities 

Understand why niobium does not achieve the theoretical losses 
• Understanding flux trapping 
• Role of cooldown conditions, thermo- 

currents 
• Impurities ... 

 
Develop new materials  
• MgB2, Nb3Sn ... 
• Multilayer superconductors 
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Universität Wuppertal 

Nb3Sn 
Cryogenic power savings = ×2 

Flux trapping in different  
Nb samples 

S. Aull et al., Proc. 
SRF 2011 & PRST-AB 
(to be subm.)  

O. Kugeler et al., Proc. SRF 2011 
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A. Neumann et al., PRST-AB 13, 082001 (2010) 
 

Microphonic detuning in CW-TESLA cavities measured at HoBiCaT, HZB Required RF power for CW-TESLA cavities for different 
detuning (@ ca. 17.4 MV) 

High efficiency RF 

 
A large portion of wall-plug power is not converted to beam power 
• Efficient transmitters, e.g., IOT or solid state amplifiers 
• Learn how to power several cavities with one, larger transmitter. 
• Efficient use of RF power: Minimizing external noise sources (e.g., 

microphonics) through passive and active means.  In this example: more than 
×4 in installed RF power savings 
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PT-1 Goals: Solving the challenges for NG-SRF Accelerators 

Structure design 
• Electron accelerators: > 100 mA L-Band system, 

heavily HOM damped (HZB) 
• Ion accelerators: CH Structure for low-beta 

acceleration of ions (GSI) 
 
RF systems 
• Efficient CW RF systems for LINACs (DESY, HZB) 
• CW LLRF and microphonics compensation, vector-

sum operation of narrow-bandwidth systems (DESY, 
HZB) 

 
Cryogenic losses 
• Understanding and reducing losses in niobium (DESY, 

HZB) 
• New SRF materials (DESY, HZB) 

 
Electron sources 
• High-current SRF photoinjector system (HZDR, HZB) 
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Combine these for a 
complete CW SRF  
system for use in high- 
current machines 
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Goal: CW SRF Systems with many applications 

Develop generic CW/long-pulse technology for various applications 
• Combine features in a CW System that has broad applicability 
• E.g., high-current cavity module with 
o  Low power dissipation 
o  Optimized RF system for narrow bandwidth 
o  Heavy HOM damping for high current operation 
o  … 
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BESSY II BESSYVSR 

Part of PT-3  

Part of PT-3  

BESSYVSR 
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Goal: CW SRF Systems with many applications 

Development of SRF injectors for CW LINACs 
• High current 
• Low emittance 
• Short pulses 

E.g.: 

ERLs 
(many apps) 

X-ray FEL, Courtesy K-J. Kim, ANL 

FLASH operating CW? 27/28 
J. Delayen, Proc. LINAC 2010 
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Goal: Ion structures for CW applications 

GSI Superconducting CW LINAC  
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Beam Intensity (particles/sec) 
(S. Hofmann et al, EXON 2004) 3 *1012 6 *1013 

Beam on target 10 weeks 4 days 

Motivation: 
Element 120, <0.1 pb (1pb <-> 1 event/week) 

J. Delayen, Proc. LINAC 2010 

Demonstrator Project (HIM, GSI) 
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Thank you 

Thank you for help in compiling this talk  
 
Winfried Barth (GSI) 
Andreas Jankowiak (HZB) 
Oliver Kugeler (HZB)  
Peter Michel (HZDR) 
Anke-Susanne Müller (KIT) 
Axel Neuman (HZB) 
Hans Weise (DESY) 
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