### **Development for (heavy ion) injector linacs**

# W. Barth, GSI, HIM (G. Clemente, B. Schlitt, W. Vinzenz)

- Motivation
- Heavy ion high energy linac injector
- Key components (rf-structures, high power rf-amplifier)
  - nc IH-cavity
  - nc CH-cavity
- Linac injectors @ GSI
- Future options
- sc CH-DTL
- Outlook





### **Motivation**

#### A Modern High Power Injector...

- should be...
  - compact
  - high efficient (rf-power consumption)
  - cost saving in production and operation
- should provide beam of...
  - High Intensity (minimum particle loss)
  - High Brilliance
- LINAC parameters (e.g. final beam energy, beam current and charge) should be fixed with respect to the synchrotron design limits
  - Tune Shift
  - Life Time
  - Space charge limit





### **Heavy Ion High-Energy Linac Injector**

#### Typical Layout for a room temperature injector



### **Room temperature DTL for low and intermediate energy**



Goethe University Frankfurt/IAP



GSI







### Example of a heavy ion linac injector



### Key Component: E-Mode DTL vs H-Mode DTL



W. Barth, Development for linac injectors, GSI, Nov., 21, 2011

**GEMEINSCHAFT** 

Zentrum Berlin

# Key Component: H-Mode DTL

- Compactness
- Simplified Mechanical Design
- Reduced number of quadrupoles
- Higher RF efficiency and Stability
- No need of post-couplers
- Low construction and operational costs



β[%]



**Room Temperature IH-DTL** 

Room Temperature CH-DTL

Superconducting CH-DTL







## **Room Temperature IH-DTL**

### Range of Operation: $0.01 \le \beta \le 0.2$ , $30 \text{ MHz} \le f \le 220 \text{ MHz}$

- Established as standard solution for heavy ion acceleration
- For  $\beta \le 0.1$  even competitive with s.c. structure at identical accelerator length
- In operation at GSI, CERN, BNL, TRIUMPH, HIMAC, HIT, CNAO
- High Current operation demonstrated at the HSI at GSI
- Limited number of RF tuners (1-2 per cavity) No postcouplers required









### **Room Temperature CH-DTL**

### Range of Operation: $0.08 \le \beta \le 0.45$ , $f \ge 170$ MHz

- Higher RF efficiency for  $\beta \le 0.2$
- Possibility of Coupled Structure at low β
- Very long lens-free section for  $\beta \ge 0.25$
- Intensive R&D performed at IAP and GSI
- Adopted at FAIR, Project-X and LANSCE
- First Coupled Structure in production
- High Power RF test foreseen in 2012 at GSI



2 kW (cw)-test at IAP











### GSI <u>UNI</u>versal <u>Linear</u> <u>AC</u>celerator







# **Requirements for FAIR-linac injector operation**

|                            | HSI<br>entrance         | HSI<br>exit             | Alvarez<br>entrance    | SIS 18<br>injection            | SIS 18<br>injection<br>(FAIR) |
|----------------------------|-------------------------|-------------------------|------------------------|--------------------------------|-------------------------------|
| ION SPECIES                | $^{238}\mathrm{U}^{4+}$ | $^{238}\mathrm{U}^{4+}$ | $^{238}\text{U}^{28+}$ | $^{238}\mathrm{U}^{28+}$       | $^{238}\text{U}^{28+}$        |
| El. Current [mA]           | 16.5                    | 15                      | 12.5                   | 8.4*                           | 15                            |
| Part. per 100µs<br>pulse   | $2.6 \cdot 10^{12}$     | $2.3 \cdot 10^{12}$     | $2.8 \cdot 10^{11}$    | <b>1.9</b> ·10 <sup>11</sup> * | 3.5·10 <sup>11</sup>          |
| Energy [MeV/u]             | 0.0022                  | 1.4                     | 1.4                    | 11.4                           | 11.4                          |
| $\Delta W/W$               | -                       | $\pm 4.10^{-3}$         | $\pm 2.10^{-3}$        | $\pm 2.10^{-3}$                | $\pm 2.10^{-3}$               |
| ε <sub>n,x</sub> [mm mrad] | 0.3                     | 0.5                     | 0.75                   | 0.8                            | 0.8-1.1                       |
| ε <sub>n,y</sub> [mm mrad] | 0.3                     | 0.5                     | 0.75                   | 2.5                            | -                             |

\* in SIS-acceptance, as expected from multiparticle calculation





# **GSI-Future Option**



W. Barth, Development for linac injectors, GSI, Nov., 21, 2011

HELMHOLTZ

GEMEINSCHAFT





W. Barth, Development for linac injectors, GSI, Nov., 21, 2011

HELMHOLTZ

# **Future Option: High Energy LINAC**

#### Heavy Ion Injector for FAIR:

- Short pulse operation (100 μs)
- Low duty factor (< 1%)</li>
- Very high beam current
- High beam rigidity
- Multiple beam operation

#### Present Status Of UNILAC

- Most of the Alvarez-tank and all Single Gap Resonators in operation since 1975
- Issues on machine reliability and maintenance  $\Rightarrow$  substitution of the DTL cavities
- Operation of quadrupoles only in dc-mode
- Limited flexibility for multibeam operation
- Less effective for short pulse operation because of high power, high duty factor operation
  - Injection of U<sup>28+</sup> (Gas-Stripper):
  - Beam losses in SIS due to charge interaction with the residual gas  $\Rightarrow$  Increasing of the injection energy
  - High acceleration gradient in the Alvarez DTL required  $\Rightarrow$  Use of H-mode DTL
  - Limited beam current for High SIS Energy due to the second stripping process ⇒ Increasing of charge state

### MASSIVE INJECTOR-UPGRADE REQUIRED !





## **Future Option: The HE-LINAC**

 Life time Increase by injection of higher charge state Space charge Limit and Tune shift









### **Future Option: The FAIR HE Linac**







### **Future Option: The FAIR High Energy-Linac**







| DTL | ∆W<br>(keV/u) | P <sub>beam</sub><br>(kW) | P <sub>loss</sub><br>(MW) | V <sub>eff</sub><br>(MV) | Length<br>(m) |
|-----|---------------|---------------------------|---------------------------|--------------------------|---------------|
| IH3 | 426           | 511                       | ≤ 1.1                     | 26.7                     | ~ 2.9         |
| IH4 | 445           | 534                       | ≤ 1.1                     | 28.7                     | ~ 3,1         |
| IH5 | 408           | 490                       | ≤ 1.1                     | 25.8                     | ~ 3.0         |
| IH6 | 336           | 403                       | ≤ 1.1                     | 23.9                     | ~ 3.0         |









W. Barth, Development for linac injectors, GSI, Nov., 21, 2011

HELMHOLTZ

### **GSI sc-cw-LINAC-project**

#### **Motivation:**

*Element 120, <0.1 pb (1pb <-> 1 event/week)* 

|                                                                 | <b>GSI-UNILAC</b>   | cw-LINAC            |
|-----------------------------------------------------------------|---------------------|---------------------|
| Beam Intensity (particles/sec)<br>(S. Hofmann et al, EXON 2004) | 3 *10 <sup>12</sup> | 6 *10 <sup>13</sup> |
| Beam on target                                                  | 10 weeks            | 4 days              |

UNILAC is not dedicated to SHE, nearly not obtainable to keep SHE @ GSI competetive: Increase of Beam Intensity and Detection Efficiency

#### **General parameters**

| Mass/Charge            |       | 1/6       |
|------------------------|-------|-----------|
| Frequency              | MHz   | 217       |
| max. beam current      | mA    | 1         |
| Injection Energy       | MeV/u | 1.4       |
| Output energy          | MeV/u | 3.5 - 7.5 |
| Output energy spread   | keV/u | +- 3      |
| Length of acceleration | m     | 12.7      |
| Sc CH-cavities         |       | 9         |
| Sc solenoids           |       | 7         |

#### Multicell sc-CH-cavity

- Small number of rf cavities (gap numbers from 10 to 20)
- acc. gradient of 5 MV/m  $\rightarrow$  compact linac design
- · Cold solenoids in the inter-tank sections
- Several cavities, solenoids per cryostat
- Cavity lengths range up to around 1 m
- Cylindrical cryostats is typically <6 m long
- At a given frequency: CH-type cavities has very small transverse dimensions



## 216 MHz-CH-Protype

216 MHz-CH-cavity (Goethe Univ. Frankfurt)



| Parameter                       | Unit       | CH-1  |
|---------------------------------|------------|-------|
| Beta                            |            | 0.059 |
| Frequency                       | MHz        | 217   |
| Gap number                      |            | 15    |
| Total length                    | mm         | 690   |
| Cavity diameter                 | mm         | 420   |
| Cell length                     | mm         | 40.82 |
| Aperture                        | mm         | 20    |
| Effective gap voltage           | kV         | 225   |
| Voltage gain                    | MV         | 3.13  |
| Accelerating gradient           | MV/ m      | 5.1   |
| E <sub>p</sub> / E <sub>a</sub> |            | 6.5   |
| B <sub>p</sub> /E <sub>a</sub>  | mT/ (MV/m) | 5.9   |
| R/ Q                            | Ω          | 3540  |
| Static tuner                    |            | 9     |
| Dynamic bellow tuner            |            | 3     |

HZDR

Zentrum Berlin



**Solenoids** 

| Bmax     | 9,323T   |
|----------|----------|
| B*L      | 2,635 Tm |
| L        | 0,28 m   |
| Aperture | 30 mm    |

Cryostat:







### **Outlook I**

- H-mode structure are established as a standard solution for heavy ion injectors
- For injection energies lower than 20 MeV/u a RFQ+IH-DTL is the most reliable solution
- For higher beam energies (up to 120 MeV/u) CH-DTL is a considerable option
- GSI Injector upgrade:
  - Substitution of the Alvarez DTL with IH-CH Combination up to 22 MeV/u
  - Increase of the injection energy into the SIS18
  - Reduced beam losses inside the SIS18
  - In a long term perspective injection energy could be increased up to 100 MeV/u
- In parallel a dedicated s.c. LINAC is under development for the SHE program





### **Outlook II**

- 108 MHz, 2 MW rf-amplifier (duty factor 1%)?
- R&D for a nc CH-cavity as a key component for acceleration of heavy • ion  $(\beta > 0.2)^*$
- Prototyping for a nc 325 MHZ-CH-cavity\*
- Prototyping for a sc 325 MHZ-CH-cavity
- High power rf-testing at the GSI-klystron test stand\*
- \* covered by ARD! advanced beam dynamics layout of the High Energy linac
- Conceptual layout  $\rightarrow$  design report
- Technical layout  $\rightarrow$  design report





## Backup





### **Future Option: FAIR Proton Linac**



$$B_n := 63.6 \frac{\text{mA}}{\mu \text{m}} \cdot \frac{(\beta \gamma)^2}{\eta_{MTI}} \rightarrow 16.5 \text{ mA / } \mu \text{m} \rightarrow \text{I} = 35 \text{ mA}, \beta \gamma \epsilon_x = 2.1 \text{ } \mu \text{m}$$

$$B_{\text{MTI}} := \text{MTI filling factor} \rightarrow 60\%$$





### XADS





