THEIA/Reimei seminar, 2022.02.09 Online

Production of E[−] hypernuclei and properties of E-nucleus potentials

T. Harada

Osaka Electro-Communication Univ. /J-PARC Branch, KEK Theory Center

Collaboration with Y. Hirabayashi (Hokkaido Univ.)

Outline

- 1. Introduction
 - Theoretical studies of Ξ^- s.p. potentials
 - Experimental information on Ξ^- hypernuclei
- 2. Production of Ξ^- hypernuclei
 - Distorted-wave Impulse approximation (DWIA)
 - Medium effects on Ξ^- production Optimal Fermi averaging (OFA)
 - Analysis of Ξ^- QF spectra of the ⁹Be(K⁻, K⁺) reaction
 - Properties of the Ξ^{--8} Li potential
- 3. Properties of Ξ -nucleus potentials
 - Ξ^{-12} C vs. Ξ^{-14} N potentials
 - Ξ^{-56} Fe potentials and Ξ^{-} -atomic states
 - Discussion

4. Summary

1. Introduction

<u>Theoretical studies of Ξ^- s.p. potentials</u>

Experimental Information on Ξ^- Hypernuclei

 B_{Ξ} (2p) = 1.03 ±0.18 MeV or 3.87 ±0.21 MeV, which suggested to form a Coulomb-assisted nuclear 2p bound state for Ξ -.

T. Nagae et al., AIP Conf. Proc. 2130, 020015 (2019).

✓ Accurate observation of Ξ^- production: Their analysis is now ongoing.

Recent observations of Ξ^- hypernuclei from emulsion

compared with theoretical predictions

M. Yoshimoto, Prog. Theor. Exp. Phys. 2021, 073D02.

- ✓ Ξ⁻ capture from the 2P state: B_{Ξ} (2P) = 1.03 MeV(KISO)-1.27 MeV (IBUKI)
 - The Ξ -nucleus potential is attractive in the real part.

14

- The 2P capture rate (4%) obtained from cascade cal.
 - $\rightarrow \Xi N-\Lambda\Lambda$ coupling is weak (consistent with HAL-QCD).

In this talk,

We study theoretically production of Ξ^- hypernuclei in the nuclear (K⁻, K⁺) reaction and properties of the Ξ -nucleus potential.

- We evaluate the in-medium cross sections of the $K^-p \rightarrow K^+\Xi^-$ reaction, using the optimal Fermi-averaging procedure (OFA). T. Harada and Y. Hirabayashi, PRC102 (2020) 024618.
 - We demonstrate the Ξ^- QF spectrum produced via the ${}^9\text{Be}(\text{K}^-, \text{K}^+)$ reaction at 1.8 GeV/*c* to extract useful information on the Ξ -nucleus potential for Ξ^- - ${}^8\text{Li}$ from the data of the BNL-E906 experiment. T. Harada and Y. Hirabayashi, PRC103 (2021) 024605.

We discuss the properties of Ξ -nucleus potentials in comparison with the recent data from emulsion.

2. Production of Ξ^- hypernuclei

2.1 Distroted wave impulse approximation (DWIA)

Distorted-wave impulse approximation (DWIA)

Inclusive double-differential cross sections

$$\frac{d^2\sigma}{dE_{K^+}d\Omega_{K^+}} = \beta \frac{1}{[J_A]} \sum_{m_A} \sum_{B,m_B} |\langle \Psi_B | \hat{F} | \Psi_A \rangle|^2 \,\delta(\omega - E_B + E_A)$$

Energy transfer and momentum transfer in lab. system

$$\omega = E_{K^-} - E_{K^+}, \quad q = p_{K^-} - p_{K^+}$$

Kinematical factor for translating from K-N to K-A.

$$\beta = \left(1 + \frac{E_{K^+}^{(0)}}{E_B^{(0)}} \frac{p_{K^+}^{(0)} - p_{K^-}^{(0)} \cos \theta_{\text{lab}}}{p_{K^+}^{(0)}}\right) \frac{p_{K^+} E_{K^+}}{p_{K^+}^{(0)} E_{K^+}^{(0)}}$$

External operator for the production reaction

$$\hat{F} = \int d\mathbf{r} \, \chi_{\mathbf{p}_{K^{+}}}^{(-)*}(\mathbf{r}) \, \chi_{\mathbf{p}_{K^{-}}}^{(+)}(\mathbf{r}) \, \sum_{j=1}^{\Lambda} \overline{f}_{K^{-}p \to K^{+}\Xi^{-}} \, \delta(\mathbf{r} - \mathbf{r}_{j}) \hat{O}_{j}$$

Distorted-waves for outgoing K⁺ and incoming K⁻

Eikonal approximation
 C. B. Dover, et al., PRC22, 2073 (1980).

$$\chi_{K}^{(-)*}(r) \chi_{K^{-}}^{(+)}(r) = \exp(iq \cdot r)D(b, z)$$
 $D(b, z) = \exp\left(-\frac{\sigma_{K^{-}(1-i\alpha_{K^{-}})}{2}\int_{-\infty}^{z}\rho(b, z') dz' - \frac{\sigma_{K}(1+i\alpha_{K})}{2}\int_{z}^{\infty}\rho(b, z') dz'\right)$
 $D(b, z) = \exp\left(-\frac{\sigma_{K^{-}(1-i\alpha_{K^{-}})}{2}\int_{-\infty}^{z}\rho(b, z') dz' - \frac{\sigma_{K}(1+i\alpha_{K})}{2}\int_{z}^{\infty}\rho(b, z') dz'\right)$
 $\sigma_{m} = (Z/A)\sigma_{mp}^{\text{tot}} + (N/A)\sigma_{mn}^{\text{tot}}$
 $\alpha_{K^{-}} = \alpha_{K} = 0$
 $\sigma_{K^{-}} = 28.9 \text{ mb}$
 $\sigma_{K^{+}} = 19.4 \text{ mb}$
 T. Motoba, et al., PRC38, 1322 (1988).

 S. Tadokoro, et al., PRC51, 2656 (1995).
 Table of the second s

S. Tadokoro, et al., PRC**51**, 2656 (1995). P. Khaustov et al., PRC**61**, 054603 (2000).

Partial wave expansion

$$\chi_{K}^{(-)*}(\mathbf{r}) \chi_{K^{-}}^{(+)}(\mathbf{r}) = \sum_{L} \sqrt{4\pi (2L+1)} i^{L} \tilde{j}_{L}(r) Y_{L}^{0}(\hat{\mathbf{r}})$$
$$\tilde{j}_{L}(r) = \sum_{\ell \ell'} \sqrt{\frac{2\ell'+1}{4\pi}} \frac{2\ell+1}{2L+1} i^{\ell-L} (\ell 0\ell' 0 | L 0)^{2} j_{\ell}(r) D_{\ell'}(r)$$
$$\ell \leq 30 \qquad \text{Recoil effect: } \mathbf{r} \to \frac{M_{C}}{M_{A}} \mathbf{r}$$

Production cross sections in $A(a,b)_Y B$ reactions

Morimatsu, Yazaki, NPA483 (1988) 493.

z

 $\overset{\bigotimes}{\underset{E_0}{\otimes}} \overset{\bigotimes}{\underset{E_n}{\otimes}} \overset{\bigoplus}{\underset{E_n}{\underset{E_{th}}{\otimes}}}$

Green's function method

Strength function

$$S(E) = \sum_{B,m_B} |\langle \Psi_B | \hat{F} | \Psi_A \rangle|^2 \,\delta(\omega - E_B + E_A)$$

$$= -\frac{1}{\pi} \operatorname{Im} \sum_{\alpha \alpha'} \int d\mathbf{r} d\mathbf{r}' F_{\Xi}^{\alpha \dagger}(\mathbf{r}) G_{\Xi}^{\alpha \alpha'}(E;\mathbf{r},\mathbf{r}') F_{\Xi}^{\alpha'}(\mathbf{r}')$$

$$\sum_{B} |\Psi_B\rangle \delta(E - E_B) \langle \Psi_B | = (-)\frac{1}{\pi} \operatorname{Im} \left[\frac{1}{E - H_B + i\epsilon} \right]$$

Completeness relation

$$G^{(+)}(E; \boldsymbol{r}, \boldsymbol{r}') = \sum_{n} \frac{\varphi_{n}(\boldsymbol{r})(\tilde{\varphi}_{n}(\boldsymbol{r}'))^{*}}{E - E_{n} + i\epsilon} + \frac{2}{\pi} \int_{0}^{\infty} dk \frac{k^{2}S(k)u(k, \boldsymbol{r})(\tilde{u}(k, \boldsymbol{r}'))^{*}}{E - E_{k} + i\epsilon}$$

bound states,
quasibound states
$$Continuum states,resonance states$$

2.2 Medium effects on Ξ^- production

Distorted-wave impulse approximation (DWIA)

Inclusive double-differential cross sections

$$\frac{d^2\sigma}{dE_{K^+}d\Omega_{K^+}} = \beta \frac{1}{[J_A]} \sum_{m_A} \sum_{B,m_B} |\langle \Psi_B | \hat{F} | \Psi_A \rangle|^2 \,\delta(\omega - E_B + E_A)$$

Energy transfer and momentum transfer in lab. system

$$\omega = E_{K^-} - E_{K^+}, \quad q = p_{K^-} - p_{K^+}$$

Kinematical factor for translating from K-N to K-A.

$$\beta = \left(1 + \frac{E_{K^+}^{(0)}}{E_B^{(0)}} \frac{p_{K^+}^{(0)} - p_{K^-}^{(0)} \cos \theta_{\text{lab}}}{p_{K^+}^{(0)}}\right) \frac{p_{K^+} E_{K^+}}{p_{K^+}^{(0)} E_{K^+}^{(0)}}$$

External operator for the production reaction

$$\hat{F} = \int d\mathbf{r} \, \chi_{\mathbf{p}_{K^+}}^{(-)*}(\mathbf{r}) \chi_{\mathbf{p}_{K^-}}^{(+)}(\mathbf{r}) \, \sum_{j=1}^{A} \overline{f}_{K^-p \to K^+ \Xi^-} \delta(\mathbf{r} - \mathbf{r}_j) \hat{O}_j$$

$$\lim_{k \to \infty} \sum_{j=1}^{N} \sum_{k \to \infty} \sum_{j=1}^{N} \sum_{k \to \infty} \sum_{j=1}^{N} \delta(\mathbf{r} - \mathbf{r}_j) \hat{O}_j$$

<u>Total cross section σ_{tot} for the $K^-p \rightarrow K^+\Xi^-$ reaction</u>

Optimal Fermi-averaging (OFA) procedure

T. Harada and Y.Hirabayashi, NPA744 (2004) 323.

Coptimal cross section for K-p -> K+Ξ⁻ reaction
$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{\theta_{lab}}^{opt} \equiv \beta |\overline{f}_{K^-p \to K^+\Xi^-}|^2$$

$$= \frac{p_{K^+}E_{K^+}}{(2\pi)^2 v_{K^-}} |t_{\bar{K}N,K\Xi}^{opt}(p_{K^-};\omega,q)|^2$$
Optimal Fermi-averaged KN -> KΞ t-matrix

$$t_{\bar{K}N,K\Xi}^{opt}(p_{\bar{K}};\omega,q)$$
Elementary t-matrix

$$= \frac{\int_0^{\pi} \sin \theta_N d\theta_N \int_0^{\infty} dp_N p_N^2 \rho(p_N) t_{\bar{K}N,K\Xi}(E_2; p_{\bar{K}}, p_N)}{\int_0^{\pi} \sin \theta_N d\theta_N \int_0^{\infty} dp_N p_N^2 \rho(p_N) t_{\bar{K}N,K\Xi}(E_2; p_{\bar{K}}, p_N)} |_{p_N = p_N^*}$$
On-energy-shell equation for a struck proton momentum: p_N^*

$$\sqrt{(p_N^* + q)^2 + m_{\Xi}^2} - \sqrt{(p_N^*)^2 + m_N^2} = \omega \quad \text{including the binding effects.}$$
Optimal momentum approximation:
$$\tau = t_a + t_a G_a h G_a t_a + t_a G_a h (G_a + G_a t_a G_a) h G_a t_a + \cdots h = G_a^{-1} - G^{-1} \text{ vanishes}}$$

 \checkmark Strong energy and angular dependencies of the cross sections.

$\frac{\text{Energy dependence of } in-medium K^{-}p \longrightarrow K^{+}\Xi^{-} \text{ cross sections}}{(d\sigma/d\Omega)^{\text{opt}}} \quad p_{K^{-}}=1.8 \text{ GeV/c} \quad \beta(d\sigma/d\Omega)^{\text{av}}$

 The behavior of OFA is very different from that of the ordinary Fermiaveraging.
 19/56

Application of Optimal Fermi-averaging (OFA) procedure (1)

Λ production

$^{12}C(\pi^+, K^+)$ reactions

- The calculated spectra in the QF region can explain the experimental data at 1.20 and 1.05GeV/c.

This makes the width look narrow.

- The ω energy-dependence originates from the nature of the "optimal Fermiaveraging" t-matrix.
- Need careful consideration for energydependent of the elementary cross section.

Application of Optimal Fermi-averaging (OFA) procedure (2)

" $\pi^- p \rightarrow K^+ \Sigma^-$ reactions" on the nucleus (²⁸Si, ²⁰⁹Bi, ⁶Li)

There exists a strong angular and energy dependence in the OFA amplitudes.
 21/56

Application of Optimal Fermi-averaging (OFA) procedure (3)

²⁸Si(π⁻,K⁺) reaction at 1.2GeV/c

Normalization factor

 Σ^{-}

- Calculated spectra with OFA can explain the data of the (π^-, K^+) spectra, by using the Σ -nucleus potentials for fits to the $\Sigma^$ atomic X-ray data.

T. Harada, Y. Hirabayashi, NPA759 (2005) 143

Quasifree Ξ^- production in the ⁹Be(K⁻,K⁺) reaction

T. Tamagawa, Ph.D. thesis, Univ. of Tokyo, 2000 (unpublished).

It seems challenging to extract information on the Ξ -nucleus potential because these calculated spectra cannot sufficiently reproduce the data.

M.Kohno, PRC100 (2019) 024313

<u>Verification of the optimal Fermi-averaged $K^- p \rightarrow K^+ \Xi^- ampl.$ </u>

0.4 0.4 ⁹Be ${}^{9}\text{Be}(K^{-},K^{+})$ q $(\mu b/sr MeVc^{-1})$ [EXP.] 1.8GeV/c 0.3 0.3 $(f_s = 0.940)$ Const. (np) $\beta [d\sigma/d\Omega]$ SL 0.2 0.2 MeVc OFA $\overline{\sigma}_{1.5^\circ-8.5^\circ}$ 0.1 0.1 CAL. 0.0 0.0 1.0 1.1 1.21.31.4 p_{κ^+} (GeV/c)

Data: Tamagawa (BNL-E906 collaboration)

This calculated spectrum with OFA improves to reproduce the data of the ${}^{9}Be(K^{-}, K^{+})$ reaction at BNL-E906. 26/56

Remarks

We show the strong energy and angular dependencies of the in-medium $K^-p \rightarrow K^+\Xi^-$ production cross section, which are important to describe the shape and magnitude of the Ξ^- production spectrum in the (K⁻, K⁺) reaction on the nuclear target.

T. Harada and Y. Hirabayashi, PRC102 (2020) 024618.

- This result may be a basis for the study extracting the properties of the Ξ -nucleus potential from the QF data.
 - We expect that an analysis of Ξ^- QF spectrum produced via the ⁹Be(K⁻, K⁺) reaction at 1.8 GeV/*c* can extract useful information on the Ξ -nucleus potential for Ξ^- -⁸Li from the data of the BNL-E906 experiment.

2.4 Properties of the Ξ^{--8} Li potential

Effects of the real part of the Ξ -nucleus potential

30/56

✓ The minimum position of $\chi^2_{min}/N = 15.2/17 = 0.89$, and $\Delta \chi^2 = 2.30$, 4.61, and 9.21 correspond to 68%, 90%, and 99% confidence levels for two parameters, respectively.

31/56

✓ The value of χ^2 is almost insensitive to W_0 .

 $\Xi^- QF$ spectrum by ${}^9Be(K^-,K^+)$ reaction at 1.8GeV/c

 \checkmark The calculated spectrum can explain the data very well.

Validity of the imaginary part of the E-nucleus potential

The first-order optical potential $(t\rho)$ $U_{\Xi}^{(1)}(r) = t_{\Xi^- p} \rho_p(r) + t_{\Xi^- n} \rho_n(r)$ The imaginary part of $U_{\Xi}^{(1)}$ $W_{\Xi}^{(1)}(r) = -\langle v_{\Xi^- p} \sigma(\Xi^- p \to \Xi^0 n, \Lambda \Lambda) \rangle \rho_p(r)/2$ The imaginary part of $U_{\Xi}^{(1)}(r) = -\langle v_{\Xi^- p} \sigma(\Xi^- p \to \Xi^0 n, \Lambda \Lambda) \rangle \rho_p(r)/2$

Gal, Toker, Alexander, Ann. Phys. 137 (1981) 341.

- In-medium cross section

(Pauli correction + C.M. correction + Fermi-averaging)

$$\langle v_{\Xi^- p} \sigma(\Xi^- p \to \Xi^0 p, \Lambda \Lambda) \rangle \qquad \langle v_{\Xi^- p} \sigma(\Xi^- p \to \Lambda \Lambda) \rangle$$

 $\Xi^{-}p$ reaction cross sections

$$v_{\Xi^- p} \sigma = (v_{\Xi^- p} \sigma)_0 / (1 + \alpha v)$$

velocity: v parameters: $(v_{\Xi^-p}\sigma)_0, \alpha$

$\Xi^- p$ reaction cross sections in ChiEFT

 $\Box (v_{\Xi^{-}p}\sigma)_{0} = 4.5 \text{mb}, \ \alpha = 20$

Imb = 0.018 fm $W_0 = -1.5 \text{ MeV}$

35/56

Remarks

- We have studied phenomenologically the Ξ^- production spectrum of the ⁹Be(K⁻,K⁺) reaction at 1.8 GeV/*c* within the DWIA using the optimal Fermi-averaged K⁻p \rightarrow K⁺ $\Xi^$ amplitude.
- The weak attraction in the Ξ -nucleus potential for Ξ^{-8} Li provides the ability to explain the BNL-E906 data, consistent with analyses for previous experiments:

 $V_0 = -17 \pm 6 \text{ MeV}$ for $W_0 = -5 \text{ MeV}$

It is difficult to determine the value of W_0 from the data due to the insufficient resolution of 14.7 MeV FWHM.

T. Harada and Y. Hirabayashi, PRC103 (2021) 024605.

3. Properties of Ξ -nucleus potentials

 $\Xi^- + {}^{14}\!\mathrm{N} \rightarrow {}^{10}_{\Lambda}\!\mathrm{Be}(\#1) + {}^{5}_{\Lambda}\mathrm{He}(\#2),$

 $B_{\Xi_{-}} = 1.27 \pm 0.21 \text{ MeV}$

Hayakawa, et al., PRL126, 062501 (2021).

Event	Target	Decay mode		B_{Ξ^-} [MeV]	
[∦] KISO [9,10]	¹⁴ N ¹⁴ N	$^{10}_{\Lambda}{ m Be}^{10}{ m Be}^{*}$	⁵ ∆He 5∆He	$\frac{3.87 \pm 0.21}{1.03 \pm 0.18}$	
IBUKI (present data)	¹⁴ N	$^{\Lambda}_{\Lambda}$ Be	${}^{\Lambda}_{\Lambda}$ He	1.27 ± 0.21	

 B_{Ξ} (2p) = 1.03 ±0.18 MeV (KISO) and 1.27 ±0.21 MeV (IBUKI), which suggested to form a Coulomb-assisted nuclear 2p bound state for Ξ^- .

$$\Xi^{-} + {}^{14}N \rightarrow {}^{5}_{\Lambda}He (\#1) + {}^{5}_{\Lambda}He (\#2) + {}^{4}He (\#3) + n$$

$B_{\Xi^{-}} = 6.27 \pm 0.27 \text{ MeV}$

38/56

Yoshimoto, et al., PTEP **2021**, 073D02(2021).

New events give the first indication of the nuclear 1s state of $\Xi^{-14}N$, and suggest that the ΞN - $\Lambda\Lambda$ coupling is weak.

Recent observations of Ξ^- hypernuclei from emulsion

compared with theoretical predictions

39/56

M. Yoshimoto, Prog. Theor. Exp. Phys. 2021, 073D02.

- ✓ Ξ⁻ capture from the 2P state: B_{Ξ} (2P) = 1.03 MeV(KISO)-1.27 MeV (IBUKI)
 - The Ξ -nucleus potential is attractive in the real part.

14

- The 2P capture rate (4%) obtained from cascade cal.
 - $\rightarrow \Xi N-\Lambda\Lambda$ coupling is weak (consistent with HAL-QCD).

Ξ^- absorption cascade process in $\Xi^{-14}N$ atom

1

 Ξ^- atomic orbits $(nl)_{\Xi}$ with $l_{\Xi} = l_p$ due to $\Xi^- p \to \Lambda \Lambda^{-1} S_0$ channel.

T. Koike, JPS Conf. Proc. 17, 033011 (2017).

Table II. The calculated Ξ^- nuclear absorption probability (in % per stopped Ξ^-) from each atomic state. $\Delta \mathcal{E}_{1}$ The weak decay of Ξ^- during the cascade is 8.2% for any potentials.

state	ND	ESC04d	ESC08c	ESC08c-A	state	ND	ESC04d	ESC08c	ESC08c-A
1s	0.02	3×10^{-4}	1×10^{-4}	0.01	total s	0.07	0.04	0.06	0.06
2p	3.9	0.25	3.8	2.4	total p	5.7	0.88	5.7	4.0
3d	35.7	23.5	34.7	34.9	total d	67.1	47.9	65.3	65.3
4f	7.8	19.0	8.6	9.4	total f	18.9	42.9	20.8	22.5
5g	0.01	0.03	0.01	0.01	total g	0.03	0.10	0.04	0.04

 Ξ^{-14} N absorption: $3D \sim 35\%$, $2P \sim 4\%$, 1S < 0.1%

ΛΛ and ΞN interactions from lattice QCD near the physicalpointK. Sasaki et al.(HAL QCD Collaboration), NP998 (2020) 121737.

Attractive pocket with repulsive core

which implies that the leading-order truncation of the derivative expansion is reasonable. The diagonal potentials, $V^{\Lambda\Lambda}$ and $V^{N\Xi}$ in Fig. 1 (a, d), have <u>attractive pocket with a long-range tail</u> together with a short-range repulsive core. From the meson exchange picture, the one-pion exchange is allowed only in $N\Xi$ - $N\Xi$ channel. One interesting feature is that the overall attraction in $V^{N\Xi}$ is substantially larger than that in $V^{\Lambda\Lambda}$. The off-diagonal potentials shown in Fig. 1 (b, c) are found to be non-zero only at short distance, which suggests that the $\Lambda\Lambda$ - $N\Xi$ coupling is weak at low energies.

<u>Remarks</u>

• KEK-E224 and BNL-E885: Fu $-V_0^{\Xi} = 14$ MeV, < 20 MeV

Fukuda et al., (1998) Khaustov et al. (2000)

• BNL-E906:

 $-V_0^{\Xi} = 17 \pm 6 \text{ MeV}$ Harada-Hirabayashi (2021)

- Density dependence of $V_0^{\Xi}(\rho_0)$: $-V_0^{\Xi}(\rho_0) = 21.9 \pm 0.7 \text{ MeV}$ Friedman-Gal (2021)
- Microscopic calculations + \pm N G-matrix Lattice QCD, ChEFT: $-V_0^{\pm} < 10$ MeV Ehime, NHD, NSC08, NSC16, ...
- Contributions of $\underline{\Xi N \rightarrow \Lambda \Lambda}$ coupling and ΞNN force weak (from HAL-QCD) 42/56

Interpretation of Ξ^- binding energies B_{Ξ} for $\Xi^{-14}N$

Friedman, Gal, PLB 820 (2021) 136555.

Residual Ξ N interaction $\mathcal{V}_{\Xi N} = F_{\Xi N}^{(2)} Q_N \cdot Q_{\Xi},$ $Q_B = \sqrt{\frac{4\pi}{5}} Y_2(\hat{r}_B)$

$V_0^{\Xi} = -21.9 \pm 0.7 \text{ MeV}$

capture from $1p_{\Xi^-}$ Coulomb-assisted bound states. This involved using just one <u>common strength parameter</u> of a density dependent optical potential. <u>Long-range ΞN shell-model correlations were es-</u> <u>sential in making the ¹⁴N events consistent with the ¹²C events</u>. <u>Earlier attempts to explain these data overlooked this point, there-</u> <u>fore reaching quite different conclusions [50–54]</u>. Predicted then are $1s_{\Xi^-}$ bound states with $B_{\Xi^-}^{1s} \sim 10$ MeV in ¹²C and somewhat larger in ¹⁴N, deeper by 4–5 MeV than the $1s_{\Xi^-}$ states claimed by

<u>Ξ-Binding energies $B_{\underline{\Xi}_{-}}$ for twin Λ hypernuclei in emulsion</u> (E176/E373/E07)

$\Xi^{-12}C$ vs. $\Xi^{-14}N$

Dependence of V_0^{Ξ} strength in the Ξ -nucleus potentials

✓ The Ξ-nucleus WS potential for ¹²C is inconsistent with that for ¹⁴N for reproducing the data; $-V_0 = 17 \text{ MeV} \rightarrow 19 \text{ MeV}$, and we confirmed FG.

Ξ^{-} -nucleus optical potential for ${}^{12}C+\Xi^{-}$

WS and theoretical potentials by microscopic calculations

✓ If we fit the experimental value of B_{Ξ} for ¹²C-Ξ⁻ 2P state by introducing artificial factors, it suggests that the potential strengths are more attractive.

Ξ^{-} -nucleus optical potential for ¹⁴N+ Ξ^{-}

WS and theoretical potentials by microscopic calculations

✓ If we try to explain the experimental value of $B_{\Xi}(2P) = 2 \text{ MeV}$ for ¹⁴N-Ξ⁻ by introducing artificial factors, we need much more attractive in these potentials.

 Ξ^{--56} Fe potentials for Ξ^{--} -atomic states

Ξ -nucleus optical potentials in ⁵⁶Fe+ Ξ -

WS and theoretical potentials by microscopic calculations

J-PARC E03: Ξ^- atomic X-ray on ⁵⁶Fe

Strong-shifts and widths on Ξ^- atoms

✓ Strong-shifts and widths on Ξ^{-56} Fe indicate useful information on the properties of the Ξ -nucleus potential in the surface region, especially the imaginary parts.

Strong-shifts and widths on Ξ^- atoms

07 Feb. 2022

		5g	6h	(keV)
WS17	E	4.565	0.0285	
	Width	2.564	0.0098	
Ehime	E	12.016	0.0837	
	Width	4.112	0.0086	
ChEFT	E	3.702	0.0207	
	Width	0.386	0.0012	
HAL	E	4.819	0.0337	
	Width	0.107	0.0004	
fss2	E	1.281	0.012	(Kohno)
	Width	0.088	0.001	

Summary

We have discussed theoretically production of Ξ^- hypernuclei in the nuclear (K⁻, K⁺) reaction and properties of the Ξ -nucleus potentials.

We have studied the Ξ^- production spectrum of the ⁹Be(K⁻, K⁺) reaction at 1.8 GeV/*c* within the DWIA using the optimal Fermi-averaged K⁻p \rightarrow K⁺ Ξ^- amplitude.

T. Harada and Y. Hirabayashi, PRC102 (2020) 024618.

- The weak attraction in the Ξ -nucleus potential for $\Xi^{-.8}$ Li provides the ability to explain the BNL-E906 data, consistent with analyses for previous experiments: $V_0 = -17 \pm 6$ MeV for $W_0 = -5$ MeV T. Harada and Y. Hirabayashi, PRC103 (2021) 024605.
- We discuss the properties of Ξ -nucleus potentials compared to the recent emulsion data.
- Future subjects and prospects $\rightarrow \Xi NN$ force and $\Xi N-\Lambda\Lambda$ coupling More information on Ξ^- bound states and widths is needed.

Thank you very much for your attention.