Result of J-PARC E73 initial run on observation of weak decay of hypertriton and ${}^{4}_{\Lambda}$ H lifetime

y.ma@riken.jp

2022/02/02

Outline

- Introduction & motivation
- * J-PARC E73:
 - Experimental method
 - Current status
- Summary

Introduction & motivation

Nucleon vs Hyperon

- 1. First step for a unified baryonbaryon interaction
- 2. Expanding our view from the Earth to neutron star
- 3. Probing nuclear structure

pictures taken from Hyp06 poster and Nature

Probing nuclear structure

Quiz: ${}^{3}_{\Lambda}$ H vs 208 Pb which one is "bigger"?

- A good homework for your students
- Hint: a harmonic oscillator toy model, or, $r \sim sqrt(\hbar^2/4uB_{\Lambda})$
- Hypertriton: Λ (T=0) + d(T=0) @ ~130keV
- Answer: Hypertriton ~10fm is "bigger" than ²⁰⁸Pb ~7fm assuming liquid drop model

DOI: 10.1088/0954-3899/23/4/002

Motivation for J-PARC E73 experiment

As the lightest hypernucleus, ${}^{3}_{\Lambda}$ H should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV}).$

 ${}^{3}{}_{\Lambda}H \rightarrow {}^{3}He + \pi$ - decay probability: kinematics× | transition matrix | ² ~ phase space×wave function overlap a small term (separation of ~10fm)

A well separated wave function between Λ and deuteron implies small modification of ${}^{3}_{\Lambda}$ H lifetime from deuteron and, thus, its lifetime should be presumably determined by free Λ decay.

Motivation for J-PARC E73 experiment

As the lightest hypernucleus, ${}^{3}_{\Lambda}$ H should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Hypertriton lifetime puzzle challenges the very foundation of our knowledge for hypernucleus.

Collaboration	Experimental method	$^{3}_{\Lambda}$ H lifetime [ps]	Release
HypHI	fixed target	183^{+42}_{-32} (stat.) ± 37 (syst.)	2013 [4]
STAR	Au collider	142^{+24}_{-21} (stat.) ± 29 (syst.)	2018 [2]
		221±15(stat.)±19(syst.)	2021 [6]
ALICE	Pb collider	181^{+54}_{-39} (stat.) ± 33 (syst.)	2016 [3]
		242^{+34}_{-38} (stat.) ± 17 (syst.)	2019 [5]

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV});$ However, heavy ion experiments suggest $\tau \approx 180 \text{ ps...}$

Neither fish nor fowl?

TABLE I. Summary of recent measurements on ${}^{3}_{\Lambda}$ H lifetime.

Picture taken from MM. Block et al. Proc. Int. Conf. Hyperfragments, 1963

Heavy ion experiments: indirect measurement

ALICE as an example for the experimental approach.

$$c\tau = \left(5.4^{+1.6}_{-1.2}(stat.) \pm 1.00(syst.)\right) cm$$

$$\tau = \left(181^{+54}_{-39}(stat.) \pm 33(syst.)\right) ps$$

S. Piano's talk at Hyp2015

Another choice: direct measurement

Example: stopped K- experiment at KEK:

- 1. tagging pi0 with NaI
- 2. measuring π momentum with 300ps delay
- 3. subtract background from neighboring pi-bins
- 4. fit lifetime with convoluted distribution

H. Outa, et al., Nucl. Phys. A 547, (1992), 109c-114c

J-PARC E73 experimental method

Methods for direct lifetime measurement

pi- + He3 --> K0 + Hypertriton: * * by A. Feliciello, INFN, Italy

gamma + He3 --> K⁺ + Hypertriton:

by S. Nagao, Tohoku University

Both ideas are very brilliant!

Slides from J-PARC P74 proposal and Dr. Nagao's presentation

Methods for *J-PARCE73*

- K- + He3 --> pi0 + Hypertriton
 - how to detect pi0 --> decays into 2 gammas almost immediately?

Experiment	J-PARC E73	BNL STAR
Production method	³ He(K-, pi0) ³ _л Н	Au+Au
Microscopic process	Strangeness exchange	Thermal model; Coalescence model
PID	pi- momentum	Invariant mass
Quantum number	spin=1/2 dominant	1/2 and $3/2$ mixture?

Once upon a time... an ambitious project for Neutral Meson Spectroscopy

 $(K^{-}, \pi^{0}) vs (K^{-}, \pi^{-}):$

- Motivation: isospin mirror hypernucleus on T=0 target
- Method: measure π^0/π^- momentum

Working principle:

- γ converter
- Tracking chamber
- Calorimeter
- * γ opening angle \oplus energy

Fig. 1. A schematic diagram of the detector. The orientation of the two arms with respect to each other and to the scattering target is indicated. Also indicated is the convention for the x and y coordinates.

$$E_{\pi^0} = E_1 + E_2 = m_{\pi^0} \sqrt{\frac{2}{(1 - \cos\eta)(1 - X^2)}}$$

H.W. Baer, et al., Nucl. Inst. Meth. 180 (1981) 445

Once upon a time... an ambitious project for Neutral Meson Spectroscopy

Neutral Meson Spectrometer

- Constructed at Los Alamos and shipped to BNL
- MM resolution ~3MeV (design value ~1MeV)
- * Bad resolution compare to (γ , K⁺) channel

A. Rusek, et al., Nucl. Phys. A 639 (1998) 111c

Revisit π^0 decay kinematics

* π⁰ tagger needs to be *located along beam line* * Fast response, radiation hardness

Do we *really* need missing mass?

Input *π*⁰: 0~1GeV/c; 0~180deg

³He(K-, pi0)³_AH strangeness exchange reaction is known for its spin non-flip feature --> helps to pin down the ³_AH Q.N.

W/ PbF2 calorimeter cut π^0 : 0.8~1GeV/c; 0~10deg

Can we construct a fast calorimeter?

- * π^0 tagger needs to be *located along beam line*
 - * Nobody has ever put a calorimeter IN the intensive beam
- ✤ Main stream: slow inorganic scintillator of µs signal tail
- Inspired by MAMI A-4 spectrometer
 - postdoc with Prof. Frank Maas, 2009~2011

PbF2 calorimeter as π^0 tagger (inspired by A4)

Crystal	Radiation length	Moliere radius	Density	Cost	Resolution	Signal length
PbF ₂	0.93 cm	2.22 cm	7.77 g/cm ³	12 USD/cc	5%	2ns

D.F. Anderson, *et al.*, Nucl. Inst. Meth. A290 (1990) 385 P. Achenbach, *et al.*, Nucl. Inst. Meth. A416 (1998) 357

PbF2 calorimeter performance @ELPH

E73 Experimental setup

The idea of *direct measurement*: $T_{CDH}-T_0=t_{beam}+t_{\pi}-+\tau$;

- 1. A complementary measurement for Heavy Ion results
- 2. Achievable precision: $\sigma/\sqrt{N} \sim 30$ ps

J-PARC E73 current status

Current status of J-PARC E73

Staging:	Stage-0	Stage-1	Stage-2
Task:	Background study with 4He(K-, pi0)4 _A H	First measurement for ³ He(K-, pi0) ³ _A H reaction	Direct lifetime measurement for ³ _A H
Output:	Established a new method as: (K-,pi0) + decay spectrum	Production cross section study for ${}^{3}_{\Lambda}$ H @ 1GeV/c	Pin down Hypertriton lifetime puzzle
Status:	Accomplished in June, 2020	Accomplished in May, 2021	Waiting for approval; beam time in 2023?

Stage-0: feasibility study for E73

- T77 refreshes world record for ⁴_ΛH statistics by twice (1.2k events);
- New method improves
 S/N by ~ 10 times;
- All these happen within 3days of beam time!

$$K^{-} + {}^{4} He \rightarrow^{4}_{\Lambda} H + \pi^{0}$$

$$\int slows down inside {}^{4}\text{He target}$$
and decays at rest
$${}^{4} H \rightarrow^{4} He + \pi^{-} 132.9 \text{ MeV}/c$$

Stage-0: pi- spectrum from ⁴_AH

- T77 refreshes world record for ${}^{4}\Lambda H$ statistics by twice;
- New method improves S/N by ~ 10 times;
- All these happen within 3days of beam time!

Stage-0: simulation validation

decay π^- momentum vs angle

MC yield tuned to match data

GEANT4 based simulation for quasi-free Λ/Σ in-flight decay; $N(K^-, \pi^0)$ Y elementary reaction with published data + convoluted with Argonne AV18+UX Fermi motion

R.B. Wiringa et al, Phys. Rev. C 89, 024305

Stage-0: ${}_{\Lambda}^{4}$ H lifetime analysis

Good agreement between MC and data.

GEANT4 based simulation for quasi-free Λ/Σ in-flight decay; $N(K^-, \pi^0)$ Y elementary reaction with published data + convoluted with Argonne AV18+UX Fermi motion R.B. Wiringa et al, Phys. Rev. C **89**, 024305

Stage-0: ⁴_AH lifetime analysis

$190 \pm 8(stat.) \pm ??(sys.) ps$

194⁺²⁴₋₂₆ ps @ KEK stop K-H. Outa, et al., Nucl. Phys. A 547, (1992), 109c-114c $218 \pm 6(\text{stat.}) \pm 13(\text{sys.}) \text{ ps}$ @ STAR, Au-Au collision arXiv:2110.09513

Our result is amongst the most precise data; Finalizing the data analysis and preparing for publication.

Stage-1: cross section & spin of $^{3}_{\Lambda}$ H

- Hypertriton isospin:
 - * ⁴He: T=0 & ³He: T=1/2
 - * ${}^{3}\text{He}(\text{K}^{-}, \pi^{0})^{3}_{\Lambda}\text{H} \longrightarrow {}^{3}_{\Lambda}\text{H}: \text{T}=0$
- Hypertriton ground state spin is determined by two-body / three-body ratio and no direct determination so far...
- E73 stage-1 experiment can contribute on this issue.
 - * Thanks to the spin non-flip dominant (K⁻, π^0) reaction

https://doi.org/10.1103/PhysRevD.1.66; Dr. T. O. Yamamoto's PhD thesis

Stage-1: cross section & spin of ${}^{3}_{\Lambda}H$

- First direct proof of ${}^{3}_{\Lambda}$ H g.s. spin=1/2
 - * ${}^{4}_{\Lambda}H/{}^{3}_{\Lambda}H$ cross section is consistent with Prof. Harada's calculation
- Invitation for theorists: derive ³_ΛH binding with 3-body decay mode?

E73 aims to shed light on the Hypertriton lifetime puzzle

- We established a new method to investigate the isospin mirror hypernuclei by gamma-ray tagging
- E73 is ready for final data taking in early 2023 (?)
- Special thanks for Prof. Dr. Josef Pochodzalla and Prof. Dr. Patrick Achenbach, who serves at J-PARC PAC committee, for the discussion and questions.

E73/T77 collaborator list

T. Akaishi¹, H. Asano², X. Chen⁵, A. Clozza⁷, C. Curceanu⁷, R. Del Grande⁷, C. Guaraldo⁷, C. Han⁵,
T. Hashimoto⁴, M. Iliescu⁷, K. Inoue¹, S. Ishimoto³, K. Itahashi², M. Iwasaki², Y. Ma², M. Miliucci⁷,
R. Murayama², H. Noumi¹, H. Ohnishi¹⁰ S. Okada², H. Outa², K. Piscicchia^{7,9}, A. Sakaguchi¹, F. Sakuma², M. Sato³, A. Scordo⁷, K. Shirotori¹, D. Sirghi^{7,8}, F. Sirghi^{7,8}, S. Suzuki³ K. Tanida⁴, T. Toda¹, M. Tokuda¹, T. Yamaga², X. Yuan⁵, P. Zhang⁵, Y. Zhang⁵, H. Zhang⁶

¹Osaka University, Toyonaka, 560-0043, Japan
 ²RIKEN, Wako, 351-0198, Japan
 ³High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ⁴Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁵Institute of Modern Physics, Gansu 730000, China
 ⁶School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁷Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁸Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁹CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy
 ¹⁰Tohoku University, 982-0826, Sendai, Japan

é

CDC acceptance vs Kaon in-flight decay

Most of the 1.0 GeV/c K- beam in-flight decay background is out of the acceptance of CDS spectrometer.

Detector performance: tracking and PID

Interested physics events

Uncertainty of time calibration:

Event selection: DCA & calorimeter cut

Intrinsic bias of T77(E73) approach

- * ${}^{4}_{\Lambda}$ H differential cross section from Prof. T. Harada;
- Assuming reaction vertex is the same as the decay vertex;
 - Vertex determined by connecting K^- and π^- track;
 - A systematic bias studied with MC data

T. Harada, Y. Hirabayashi, Nucl. Phys. A, 1015, 122301 (2021)

quasi-free hyperon decay time spectrum

mom

500

W/DCA<5mm cut

quasi-free hyperon decay time spectrum

W/ODCA cut

Production method vs hypertriton spin

 ${}^{3}_{\Lambda}H/{}^{4}_{\Lambda}H \sim 0.26 \pm 0.10$ in average 1.7 deg: 0.25 vs 12 deg: 0.90: Difficult to interpret, something new?

DOI: 10.1103/PhysRevLett.93.242501; 10.1103/PhysRevD.1.66

cross section & spin of Hypertriton

(e, e'K+) reaction @ J-Lab

- ⁴_ΛH contains both 0+ and
 1+ states (spin-flip
 favored) in J-Lab results;
- * ³[∧]H is pure 1/2+ or has a virtual 3/2+ state near threshold?
- Can not be distinguished with ~4MeV resolution