Hadron Physics: Exotic Hadrons

Daniel Mohler

Bad Honnef,
December 10, 2021

Scope of this talk

- I will interpret "exotic" very loosely for this talk as hadrons that do not fit the traditional $q \bar{q}$ and $q q q$ picture
- The focus will be on reporting progress with regard to calculations of (exotic) hadron resonances and bound states from low-energy QCD

Methods:

- Effective field theory, Lattice QCD , functional methods, data driven approaches

Locations in Germany:

- Bonn, Darmstadt/GSI, Frankfurt, Giessen, Jülich, Mainz, München, Regensburg, Wuppertal

> I will cover a small selection of recent activities.
> My sincere apologies for what I can not cover!

Exotic meson example: D_{s} and B_{s}

Established s and p-wave hadrons:

$$
\begin{gathered}
D_{s}\left(J^{P}=0^{-}\right) \text {and } D_{s}^{*}\left(1^{-}\right) \\
D_{s 0}^{*}(2317)\left(0^{+}\right), D_{s 1}(2460)\left(1^{+}\right), \\
D_{s 1}(2536)\left(1^{+}\right), D_{s 2}^{*}(2573)\left(2^{+}\right) \\
B_{s}\left(J^{P}=0^{-}\right) \text {and } B_{s}^{*}\left(1^{-}\right) \\
? \\
B_{s 1}(5830)\left(1^{+}\right), B_{s 2}^{*}(5840)\left(2^{+}\right)
\end{gathered}
$$

$$
D_{s 0}^{*}(2317):
$$

$$
\text { PRL } 90242001 \text { (2003) }
$$

- Corresponding $D_{0}^{*}(2400)$ and $D_{1}(2430)$ are broad resonances
- Peculiarity: $M_{c \bar{s}} \approx M_{c \bar{d}}$ Is this really the case?
- Additional exotic states are expected (in the sextet representation)
- B_{s} cousins of the $D_{s 0}^{*}(2317)$ and $D_{s 1}(2460)$ not (yet) seen in experiment

The lightest $J^{P}=0^{+}$mesons
$D_{0}^{*}(2300) \quad I\left(J^{P}\right)=\frac{1}{2}\left(0^{+}\right) \quad$ M.-L. Du et al., PRL 126192001 (2021)

- Unitarized ChiPT leads to a much lower mass than indicated by the PDG
- Authors compare data from LHCb to PDG (Breit Wigner) and Unitarized ChiPT scenarios

- Recent Lattice QCD results from HSC also obtain a much lighter state HSC L. Gayer et al., JHEP 07 (2021)

Physical predictions from EFT fits to lattice data

$D_{0}^{*}(2300)$
$I\left(J^{P}\right)=\frac{1}{2}\left(0^{+}\right)$ Guo, Heo, Lutz, PRD 98014510 (2018)

- Low energy constants from fits to heavy-light ground-state masses and elastic phase-shift from Lattice QCD
- Chiral EFT bridges the gap between lattice data at unphysical pion masses and physical (coupled-channel) system
- Approach for future studies at GSI: Use EFT setup to arrive at predictions for physical coupled-channel scattering

An exotic state in the $D \pi$ system

Gregory, Guo, Hanhart, Krieg, Luu, arXiv:2106.15391

- Combined fits yield attraction for the [6] and repulsion for the [15]
- Authors argue this is evidence for the molecular picture
- pole position and its quark-mass dependence is left for the future

Predictions for the bottom-light and bottom-strange cousins

```
Fu, Grießhammer, Guo, Hanhart, Meißner, arXiv:2111.09481
```

- Updates and corrects previous mass estimates
- Updates the strong and radiative decays
- Shows consistency of the results with measured ratios of partial widths

$$
\text { X.-Y. Guo and M.F.M. Lutz, PRD } 104054035 \text { (2021) }
$$

- Investigates impact of subleading-order chiral interactions
- Uses recent Lattice QCD input for masses and scattering phases in the charm sector to predict the bottom-light states
- LHCb is searching for the bottom-strange states
- $\bar{P} A N D A$ should be able to determine the decay widths of the charm-strange positive parity states!

Charmonium(-like) resonances from Lattice QCD

$$
\begin{aligned}
& \text { S. Piemonte, DM et al. PRD } 100074505 \\
& \text { S. Prelovsek, DM et al. JHEP } 06035 \\
& \text { (2021) }
\end{aligned}
$$

- Results suggest 3 charmonium(-like) states with $J^{P C}=0^{++}$below $\approx 4.13 \mathrm{GeV}$ (in addition to $\chi_{c 0}(1 P)$)
- We obtain various other states, some which previously uncertain quantum numbers
- Future studies need more physical masses / relax the assumptions that went into these results!

Dispersive analysis of $\gamma \gamma \rightarrow D \bar{D}$ data

Deineka, Danilkin, Vanderhaeghen, arXiv:2111.15033

- Model-independent method based on unitarity and analyticity
- Describes published Belle data for angular distribution in $\gamma \gamma \rightarrow D \bar{D}$ and the $D \bar{D}$ invariant mass distribution in $e^{+} e^{-} \rightarrow J / \psi D \bar{D}$.
- Gives a strong indication for a $D \bar{D}$ bound state but does not need a broad resonance $\mathrm{X}(3860)$.
- Highlights the need for sophisticated analysis of experiment data!

Quenched glueballs from functional equations

```
M.Q.Huber, C.S. Fischer, H. Sanchis-Alepuz, arXiv:2110.09180
```

 and arXiv:2111.10197

- Results from self-consistently calculated two- and three-point functions
- The only free parameter is the gauge coupling
- Fully self-consistent calculation for the pseudoscalar glueball
- Neither the lattice nor the DS results account for decays
- High spin states interesting for searches at PANDA

Spectrum and composition of the $Y(n S)$ states

```
Bicudo, Cardoso, Müller, Wagner, PRD 103 074507 (2021)
```


- Uses Lattice QCD string-breaking potentials as input to a coupled-channel Schroedinger equation
- Results are for static b-quarks
- Qualitative pattern agrees with experiment and suggests four-quark nature of the $Y(10753)$ observed by Belle
- Can be extended to further quantum numbers and by calculating additional $N_{f}=2+1$ Lattice QCD potentials

The H-Dibaryon: Progress and a word of caution

```
Green, Hanlon, Junnarkar, Wittig, arXiv:2103.01054
```


- First study of baryon-baryon scattering in the continuum limit
- Strategy: Global fits to the energy levels with parameterizations that account for discretization effects
- Binding energy at $S U(3)$ point with $m_{\pi}=420 \mathrm{MeV}$

$$
B_{H}^{S U(3)_{f}}=4.56 \pm 1.13 \pm 0.63 \mathrm{MeV}
$$

- Very large discretization effects in the binding energy!

Strategy and perspective - my own point of view

- Considerable experimental effort on hadron spectroscopy and interactions
- Examples covered highlight the need for a tight connection between theory and experiment
- Theory should strive to make predictions for new facilities.
- Spectroscopy input also needed for precision physics

How to arrive at emerging description from QCD?

- Direct lattice calculations for simple observables
- Use EFT, dispersion theory, functional methods to extent reach
- Test physical models

Backup slides

$\chi_{c 0}^{\prime}, X(3915)$ and $X(3860)$: A bit of history

$\left.X(3915), G_{\text {was }} \chi_{c 0}(3915) \quad P C\right)=0^{+}\left(0\right.$ or $\left.2^{++}\right)$

$$
\chi_{c 0}(3860), I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

- The PDG used to interpret $X(3915)$ as a regular charmonium $\left(\chi_{c 0}^{\prime}\right)$
- The $\chi_{c 0}^{\prime}$ is expected to be broad, decaying into $D \bar{D}$

$$
\begin{array}{r}
\text { Guo, Meissner PRD 86, } 091501 \text { (2012) } \\
\text { Olsen, PRD } 91057501 \\
(2015)
\end{array}
$$

- The $X(3915)$ may instead be the already known spin-2 state

$$
\text { Zhou et al., PRL } 115022001 \text { (2015) }
$$

- Observation of an alternative $\chi_{c 0}(2 P)$ by Belle:

$$
\begin{gathered}
\text { Chilikin et al. PRD } 95112003 \\
M=3862_{-32-13}^{+26+40} \mathrm{MeV} \quad \Gamma=201_{-067-82}^{+154+88} \mathrm{MeV}
\end{gathered}
$$

- New observation by $\operatorname{LHCb}\left(\chi_{c 0}(3930)\right)$:

$$
\begin{array}{r}
\text { Aaij et al., PRD } 102112003 \text { (2020) } \\
M=3923.8 \pm 1.5 \pm 0.4 \mathrm{MeV} \quad \Gamma=17.4 \pm 5.1 \pm 0.8 \mathrm{MeV}
\end{array}
$$

