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The QCD phase diagram

from GSI

Fundamental for particle-, nuclear-, astro- physics and cosmology, textbook knowledge! 

Non-perturbative nature/confinement prevents perturbative solution

“Sign problem” prevents Monte Carlo simulation (NP-hard problem?)                             
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!
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Nf � 3 1st order

Can a trace of the chiral transition
(scaling) be detected experimentally?
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Z(3) symmetry explicitly broken by  
                               

Deconfinement transition weakens,  
disappears at  

Lattice determination in progress:  
 [WHOT, Frankfurt]  

Dyson-Schwinger study  
[Fischer, Luecker, Pawlowski, PRD 15]  

Effective lattice theory for heavy quarks  
within 12% of full result  
[Fromm et al., JHEP 12;  Kim et al. LAT 21]  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mc
q ⇡ 460 MeV

Heavy mass corner: bench mark for effective theories  

Also applicable to finite 
 
Nuclear liquid gas transition from QCD! 
[Fromm et al., PRL 12]
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…is elusive, massless limit not simulable!

The nature of the QCD chiral transition 

Coarse lattices or unimproved actions: 1st order for 

1st order region shrinks rapidly as                             

Improved staggered actions: no 1st order region so far, even for    
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Nf = 2, 3
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Nf = 3

Details and references:   [O.P., Symmetry 13, 2021]
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mPS > 45MeV



From the physical point to the chiral limit
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[HotQCD, PRL 19]  HISQ (staggered) [Kotov, Lombardo, Trunin, PLB 21]  Wilson twisted mass

Keep strange quark mass fixed, crossover gets stronger as chiral limit approached

Cannot distinguish between Z(2) vs. O(4) exponents, need exponential accuracy!            

Determination of chiral critical temperature possible, but not the order of the transition

Comparison with fRG:                           ,      ‘’most likely O(4)’’   [Braun et al., PRD 20,21]  
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Figure 3. Left: Pseudo-critical temperature of the crossover defined by the chiral
susceptibility ‰, the inflection point of the chiral condensate D or an additively
renormalised chiral condensate D3, for Nf “ 2 ` 1 ` 1 twisted mass Wilson fermions
close to the continuum. Lines represent chiral extrapolations according to the Op4q
second-order or finite critical Zp2q-mass scenario. From [30]. Right: Columbia plot
expressed in ÷, fi-masses in units of the Wilson flow parameter t0. Critical points
have been determined using an Opaq-improved Wilson action. The first-order region
includes the physical point on coarse lattices, but shrinks drastically as N· is increased.
From [31].

employing either Op4q exponents or Zp2q-exponents and a critical pseudo-scalar mass up
to mfi „ 100 MeV. Again, it is not possible to distunghuish between these scenarios. As
in the previous case, the extrapolated value of the critical temperature in the chiral limit
is therefore robust under changes of the critical exponents and quoted as

T 0
c “ 134`6

´4 MeV, (5)

in remarkable agreement with the staggered result.129

Fig. 3 (right) shows an investigation of sections of the chiral critical line using Opaq130

clover-improved Wilson fermions [31]. Starting point are the data for Nf “ 3 to be131

discussed separately below, and on N· “ 6 further points at larger strange quark masses132

have been added. The critical line is then fitted assuming a tricritical strange quark mass133

as explained in Section 2.5 plus polynomial corrections. Note that this discretisation134

features a much wider first-order region, which even contains the physical point on the135

coarser lattices. This must be a lattice artefact, and the first-order region rapidly shrinks136

as N· is increased.137

Several conclusions can be drawn from these results. Firstly, the width of a potential138

first-order region as in Fig. 1 (left) is bounded to a small fraction of the physical light quark139

(or pion) masses. Second, the numerical proximity of the critical exponent combinations140

1{p—”q for the 3D Op2q, Op4q and Zp2q universality classes appears to allow for a robust141

extrapolation of the chiral transition temperature to the massless limit with remarkably142

small uncertainties. Conversely this statement implies, however, that it is impossible143

to firmly identify the universality class in this way, which would require exponentially144

accurate data. This problem might be avoided by looking at the scaling of energy-like145

variables, which are governed by the critical exponent – that changes sign between the146

Op2q, Op4q and the Zp2q universality classes. It was shown that the Polyakov loop behaves147

as an energy-like observable, but unfortunately a firm distinction betweeen universality148

classes would require a further substantial reduction of the light quark mass [32]. Finally,149

note that the value of Tcpml “ 0q is „ 25 MeV lower than the pseudo-critical temperature150
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Figure 3. Left panel: Comparison of our fRG results for the pseudocritical temperature as a function of the pion mass to
those from the HotQCD collaboration [29]. The various dashed lines represent fits to the numerical data, see main text for
details. The estimates for the critical temperature Tc have been obtained from an extrapolation of the fits to m⇡ ! 0. The
temperatures T (l,s)

60 and T lattice
c are the extrapolated results for the chiral critical temperature obtained from a definition of

the pseudocritical temperature which does not involve the peak position of the susceptibility, see main text for details. Right
panel: Susceptibility as obtained from the reduced condensate as a function of the temperature. The normalisation �̄(l,s)

M is the
maximum of the susceptibility at the physical pion mass, see Eq. (5). The lattice QCD data has been taken from Refs. [29, 62].

pseudocritical temperature on the pion mass. For the
physical pion mass, m⇡ = 140 MeV, this ratio in our
present first-principles fRG study is about a factor of
three smaller than typical values for D(l) found in low-
energy QCD model studies [35, 36]. For example,

DQM
(l) (m⇡ =140 MeV) ⇡ 0.28 (9)

was reported in Ref. [36] for the quark-meson (QM)
model. In our present QCD study, we instead find

DQCD
(l) (m⇡ =140 MeV) ⇡ 0.10 , (10)

where we have employed the value for Tc obtained from

an extrapolation of the pseudocritical temperature T (l)
pc

to the limit m⇡ = 0.
Next, we turn to the reduced susceptibility �(l,s)

M as
defined in Eq. (4). In Fig. 2 (right panel), we show
a comparison of the light-quark susceptibility and the
reduced susceptibility for three pion masses. As ex-
pected, the qualitative behaviour of the reduced suscep-
tibility is the same as the one found for the light-quark
susceptibility. More specifically, the susceptibilities in-
crease for decreasing pion mass, indicating the approach
to a singularity in the chiral limit. Fitting the rela-

tion (7) to our numerical results for T (l,s)
pc (m⇡) for m⇡ =

30, 35, 40, . . . , 140 MeV, we obtain Tc ⇡ 141.6+0.3
�0.3 MeV,

c(l,s) ⇡ 0.17+0.03
�0.03 MeV1�p, and p ⇡ 0.91+0.03

�0.03. Thus, the
critical temperature Tc is in excellent agreement with the
one extracted from our analysis of the light-quark suscep-
tibilities, as it should be. With respect to the exponent p,
we note that it also deviates clearly from the expected

O(4) value. However, we observe that it is consistent
within fit errors with the value for p which we obtained
from our analysis of the light-quark susceptibility. Over-
all, we therefore cautiously conclude that QCD is not
within the scaling regime for the range of pion masses
considered here, providing us with m⇡ ⇡ 30 MeV as a
conservative estimate for the upper bound of this regime.
An actual determination of the size of the scaling regime
is beyond the scope of present work as it requires to study
very small pion masses.

In analogy to the definition (8), we can also define
the relative dependence D(l,s)(m⇡) of the pseudocritical
temperature on the pion mass in case of the reduced sus-
ceptibility. For m⇡ = 140MeV, we then find that this
quantity is only slightly smaller than the corresponding
quantity associated with the light-quark susceptibility.

In Fig. 3 (right panel), we finally compare our fRG
results for the reduced susceptibility to very recent re-
sults from the HotQCD collaboration [29]. We observe
excellent agreement between the results from the two ap-
proaches for pion masses m⇡ & 100 MeV. The deviations
of the results from the two approaches for smaller pion
masses may at least partially be attributed to cuto↵ arte-
facts in the lattice data. Note that cuto↵ e↵ects are ex-
pected to shift the maxima to smaller temperatures. We
refer to Ref. [18] for a respective discussion.

It is also worthwhile to compare the peak positions
of the reduced susceptibilities extracted from the lattice
QCD data with those from our fRG study, see Tab. I
and Fig. 3 (left panel). As discussed above, the peak
position can be used to define a pseudocritical tem-
perature. For the presently available pion masses on
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Nature of chiral transition as function of 

Tricritical endpoints+scaling of chiral critical boundary  

Known exponents, i.e. chiral extrapolation is possible!    

Finite                   implies second-order transition in chiral continuum limit! 

crossover

1st

[Cuteri, O.P., Sciarra, JHEP 21]
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Nf
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Nf=3 O(a)-improved Wilson fermions

[Kuramashi et al. PRD 20]  
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with fipxq an interpolating operator for the pseudoscalar meson and a renormalisation
factor Z. Approaching the chiral limit, the pseudoscalar meson mass and the quark mass
are related as in the continuum,

am
2
P S 9 amq . (5.4)

It is therefore customary to define Ÿcp—q by the vanishing of the pseudoscalar meson mass in
the vacuum, i.e., amP SpŸcp—q, —q “ 0 at N· “ 8. This is shown schematically as a dashed
line in figure 9 (left). Towards the strong coupling region, this line meets the parity-flavour
violating Aoki phase [40, 41], which ends in a cusp [42, 43] whose location depends on
the lattice action and the value of N· . Around Ÿcp—q, Wilson chiral perturbation for the
theory predicts a metastability region corresponding to a first-order bulk transition between
positive and negative quark mass, while the meson mass stays finite everywhere, both for
untwisted and twisted mass [44, 45]. A metastability region has been identified numerically
at zero temperature [46] as well as at finite temperature [47, 48], but its location and extent
depend strongly on the chosen action and N· [49].

The series of Nf “ 3 data [15, 20, 21], which we re-analyse below, is based on the
RG-improved Iwasaki gauge action [50] and a non-perturbatively Opaq-improved Wilson
clover fermion action [51]. We are not aware of a dedicated study of the bare phase diagram
pertaining to the precise action and parameter tunings used in those simulations, besides
determining the line Ÿcp—, N· “ 8q. However, a previous study using the same action with
a mean-field tuning of the clover coe�cient [52] reports a phase diagram as sketched by the
dashed lines in figure 9, with no additional structures besides an Aoki phase in the strong
coupling region, so we will base our discussion on this situation.

First, it has to be emphasised that for studies of the thermal phase transition we need
the lines Ÿcp—, N· q for the finite N· under consideration, and not Ÿcp—, N· “ 8q, which is
only needed to set the scale. The former marks the vanishing of the pseudoscalar screening
mass in the low temperature phase, and is related to the latter by an expansion in powers
of N

´1
· “ aT ,

Ÿcp—, N· q “ Ÿcp—, 8q ` G1p—q N
´1
· ` G2p—q N

´2
· ` O

`
N

´3
·

˘
. (5.5)

In the literature the di�erence between the two is often dismissed, being of Opaq, whereas
in fact it is qualitatively crucial. The partition function at finite N· has no singularities on
the line Ÿcp—, 8q (except at its crossings with the thermal transition). Furthermore, the
subtracted chiral condensate has finite values with di�erent signs across Ÿcp—, N· q, which
should therefore mark a first-order transition2. Following this line with increasing — at fixed
N· , the thermal chiral phase transition is reached at some critical coupling. From this point
the thermal transition lines Ÿtp—, N· q branch o� into the positve and negative quark mass
directions, respectively, along which the chiral transition weakens to end in a critical point.
At the branching point the line Ÿcp—, N· q should terminate, since on the large-—-side of
the thermal transition the Matsubara modes „ 2fiT produce an always non-zero screening
mass and the subtracted chiral condensate can pass through zero smoothly. The branching

2
For the order of this transition it is immaterial whether the pseudoscalar screening mass is actually

zero on the line, or whether it jumps between finite values.
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Tricritical scaling, Nf=3 consistent with staggered, 2nd order in continuum!
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The emerging final(?) Columbia plot
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mc
⇡ ⇡ 4.0(4) GeV, Tc ⇡ 285(10) MeV

HotQCD arXiv:2111.12599



Chiral limit and the physical point

[Halasz et al., PRD 98; Hatta, Ikeda, PRD 03…]The “standard scenario’’:
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Tpc > Tc > Ttric > Tcep
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.

Importance of the chiral limit!
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)
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3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
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Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B
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8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B
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– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B
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CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)
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3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B
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Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B
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2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B
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CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)
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Critical endpoint: reweighting LQCD revisited

Fodor, Katz result from 2001 shows gap of rooted staggered fermions, not phase transition 
[Giordano et al., PRD 20]    

New treatment rooted determinant + reweighting in sign only [Giordano et al. JHEP 20]
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Figure 4.12: Upper left diagram: Phase diagram obtained from DSEs with modelled gluons [292, 293] (red curve with dotted and
dash-dotted lines) compared to the DSE [36] (black curve with dashed line) and lattice results [32, 111] already displayed in Fig. 4.9.
Upper right and lower right diagrams: Normalised pressure P/PSB and trace anomaly I from [293] evaluated for different values of
quark chemical potential µ. The temperature is normalised to TM , the location of the peak of the trace anomaly at µ = 0; see [293]
for details. Lower left diagram: Speed of sound from [293] (black curve) compared to results from lattice QCD [439] (blue dots) and
[6] (green band).

4.4 Thermodynamics and quark number susceptibilities

All results in the previous subsections have been obtained in the truncation scheme outlined in section 3.3.2
and generalisations thereof, i.e. including the back-reaction of the quarks onto the gluon explicitly. We now
focus on results using the gluon models detailed in section 3.3.3. Since quark-loop effects alone determine
the number of quark-flavours, Nf is not a well defined quantity in these truncation schemes. In the chiral
limit these truncations lead to a (mean-field) second order transition at µ = 0 and consequently they have
been interpreted as models for the two-flavour theory [292]. On the other hand, the parameters are tuned
such that the chiral transition temperatures are much more in line with the ones typical for the Nf = 2 +
1-theory. In the following, we adopt the latter interpretation and interpret the single quark-DSE in these
models as the one for the light up/down quark with interaction strength generated from a model gluon that
incorporates the effects of two light and one strange quark loops. This allows for a direct comparison with
lattice calculations and DSE-results for Nf = 2 + 1 (as done anyway e.g. in [292]). The location of the CEP in
the QCD phase diagram has been explored in a broad range of variants of the truncations discussed in section
3.3.3 [287, 289, 290, 292, 293, 295]. The resulting phase diagram for the set-up with the most detailed gluon
model [293] and the one with the richest quark-gluon vertex [292] is shown in Fig. 4.12. For completeness
we also show results already discussed in Fig. 4.9. Comparing the locations of the CEP in the different DSE
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FIG. 1. Phase diagram for Nf = 2 + 1 flavour QCD in com-
parison to other theoretical approaches and phenomenological
freeze-out data. Our result for the chiral crossover is depicted
by the black dashed line. The crossover temperature has been
determined through the peak position of the thermal suscep-
tibility of the renormalised light chiral condensate, @T �l,R,
at fixed baryon chemical potential µB . For more details see
Section V A, and in particular Figure 10. We show dotted
black lines for µB/T = 2, 3 to indicate the reliability bounds
for the lattice and functional methods.
The phase boundary globally agrees well with recent lattice
results. In particular the curvature of the phase boundary for
small chemical potential,  = 0.0142(2), is consistent with re-
cent lattice results,  = 0.0149(21) in [44],  = 0.0144(26) in
[47], and  = 0.015(4) in [49], for an overview see [62]. We find
a critical end point at (TCEP, µBCEP) = (107, 635) MeV. Indi-
cations for an inhomogeneous regime close to the chiral phase
transition for µB & 420 MeV are depicted by the hatched red
area. For quantitative statements in this area the current ap-
proximation has to be upgraded systematically. Accordingly
the hatched red area also serves as a reliability bound for the
current approximation. For more details see Section V B and
Figure 21.

Other theoretical results: lattice QCD based on an ana-
lytic continuation from the imaginary chemical potential [44]
(WB), lattice QCD based on a Taylor expansion in chemical
potential [49] (HotQCD), DSE approach with backcoupled
quarks and a dressed vertex [37] (Fischer et al.), and DSE
calculations with a gluon model [63] (Gao et al.).

Freeze-out data: [2] (STAR), [64] (Alba et al.), [3] (Andronic
et al.), [65] (Becattini et al.), [66] (Vovchenko et al.), and [67]
(Sagun et al.). Note that freeze-out data from Becattini et
al. with (light blue) and without (dark green) afterburner-
corrections are shown in two di↵erent colors.

ature is Tc = 156 MeV. The curvature of the chiral phase
boundary at small chemical potential is  = 0.0142(2).
With increasing µB , the crossover becomes sharper and
we find a critical endpoint at

(TCEP, µBCEP) = (107, 635) MeV . (1)

Our results for the chiral phase boundary are depicted

by the black dashed line in Figure 1.
In addition to a CEP, we also find indications for an

inhomogeneous regime for µB & 420 MeV in the vicinity
and above the chiral phase boundary. It is given by the
region in the phase diagram where mesonic dispersion
relation develop a minimum at nonvanishing spatial mo-
mentum, for more details we refer to Section V B. This
indicates a potential instability towards the formation of
an inhomogeneous quark condensate. The region where
this regime has significant overlap with the homogeneous
chiral condensate is shown by the red hatched area in
Figure 1. Within this area, a competition between ho-
mogeneous and inhomogeneous quark condensation has
to be taken into account. Hence, this already suggests
that the systematic error of the present approximation
grows large for µB/T & 3.

In Figure 1 also we compare our results to recent pre-
dictions of lattice gauge theory for the phase structure
at small µB/T from the Wuppertal-Budapest Collabo-
ration [44] (WB) and the HotQCD Collaboration [49]
(HotQCD). Our result for the pseudocritical temperature
and the curvature of the phase boundary agree very well
with the lattice. We also show predictions of the DSE
approach from di↵erent groups, [37] (Fischer et al.) and
[63] (Gao et al.). Finally we included the freeze-out data
from [2] (STAR), [64] (Alba et al.), [3] (Andronic et al.),
[65] (Becattini et al.), and [66] (Vovchenko et al.). The
freeze-out points are surprisingly close to our result for
the chiral phase boundary, even at larger µB . All in all,
we see that a consistent picture of the QCD phase bound-
ary at finite density starts to emerge form a culmination
of results from di↵erent sources.

In order to discuss the implication for CEP searches,
it is instructive to convert µB to the center-of-mass
beam energy per nucleon,

p
s. Assuming the connec-

tion between these quantities is captured by the statis-
tical hadronisation scenario, one finds to a very good
approximation for central collisions the relation

p
s =

(a/µB � 1)/b with a = 1307.5 MeV and b = 0.288 GeV�1

[3]. This yields for our prediction of the location of the
CEP the beam energy

p
sCEP ⇡ 3.7 GeV . (2)

This is clearly below the smallest beam energy of current
BES measurements of

p
s = 7.7 GeV, but well within

reach of future experiments such as FAIR’s SIS100 [16],
NICA MPD [19], J-PARC HI [20], and STAR’s Fixed-
Target (FXT) program [68], see also [22–24]. Our results
therefore provide a strong motivation for CEP searches
at these future experiments. Furthermore, the inhomo-
geneous regime appears to be also within reach of heavy-
ion collisions at small beam-energies. Hence, looking for
experimental signatures of this regime might be a worth-
while endeavour.

This work is organised as follows. In Section II we in-
troduce the functional renormalisation group approach
to QCD. In Section III, IV we discuss in detail the un-
derlying systematic truncation scheme, and specify the

[Fischer, PPNP 19] [Fu, Pawlowski, Rennecke, PRD 20]

Quantitative agreement with lattice for curvature      

Critical endpoint seen in current truncations, location consistent with lattice bounds 

Checked for stability under meson backcoupling  [Bernhardt et al. PRD 21]

Same result with hybrid approach DSE+fRG  [Gao, Pawlowski, arXiv:2112.01395]  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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.

Chiral limit: all second order    

Physical masses: all crossover 

Consistent with all available lattice results

Predicted by some models:  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the nucleon mass as well. It can therefore be identified as a chiral phase transition, after
which the beforehand broken chiral symmetry is restored and quarks and gluons become
the relevant degrees of freedom. As indicated in the hypothetical phase space of Fig. 2.6,
a restoration of chiral symmetry is expected at high temperatures and densities. However,
a restoration at such small chemical potential is an unphysical behavior, because it can be
excluded by in-medium chiral perturbation results, which are still applicable in this range
[131, 132]. Such an unphysical behavior can be avoided by taking the vacuum term into
account. It is therefore crucial to include the vacuum contribution to mean-field models to
suppress the first-order chiral transition and stabilize the chiral order parameter for larger
densities.
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Figure 3.13.: Comparison of the chiral order parameter of symmetric nuclear matter at
T = 0MeV using the mean-field model with included vacuum term versus the
mean-field model without it.. Discontinuities in � indicate phase transitions
and the interpolations in between are obtained from Maxwell constructions.

Similar to the symmetric case, the order parameter of pure neutron matter obtains an
additional phase transition in the case without vacuum contribution, see Fig. 3.14. This
phase transition at µ = 944 MeV again corresponds to a chiral restoration. And again,
taking the vacuum term into account modifies the phase transition to a smooth crossover
at way larger chemical potentials and stabilizes the order parameter. This distinction is
very important for the description of neutron star matter. In neutron stars, densities up
to five times nuclear saturation density are reached [39, 40]. If the model used to describe
the interior were to display a chiral restoration in this density range, which cannot be
treated with the ChNM model, it is not suited to describe neutron star matter. Therefore,
without taking the vacuum term into account a description of neutron stars is not possible
using a mean-field model.
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FIG. 3. Chiral order parameters in symmetric nuclear matter at temperature T = 0 as a function of baryon density. n in units
of nuclear ground state equilibrium density, n0 = 0.16 fm�3. Dotted lines: liquid-gas phase transition; dashed line: first-order
chiral phase transition. Plotted are the results from basic mean-field (MF) and extended mean-field approximations (EMF,
with inclusion of vacuum fluctuations). Also shown is the curve resulting from a functional renormalisation group (FRG)
computation based on the same ChNM model [26].
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the nucleon mass as well. It can therefore be identified as a chiral phase transition, after
which the beforehand broken chiral symmetry is restored and quarks and gluons become
the relevant degrees of freedom. As indicated in the hypothetical phase space of Fig. 2.6,
a restoration of chiral symmetry is expected at high temperatures and densities. However,
a restoration at such small chemical potential is an unphysical behavior, because it can be
excluded by in-medium chiral perturbation results, which are still applicable in this range
[131, 132]. Such an unphysical behavior can be avoided by taking the vacuum term into
account. It is therefore crucial to include the vacuum contribution to mean-field models to
suppress the first-order chiral transition and stabilize the chiral order parameter for larger
densities.
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Figure 3.13.: Comparison of the chiral order parameter of symmetric nuclear matter at
T = 0MeV using the mean-field model with included vacuum term versus the
mean-field model without it.. Discontinuities in � indicate phase transitions
and the interpolations in between are obtained from Maxwell constructions.

Similar to the symmetric case, the order parameter of pure neutron matter obtains an
additional phase transition in the case without vacuum contribution, see Fig. 3.14. This
phase transition at µ = 944 MeV again corresponds to a chiral restoration. And again,
taking the vacuum term into account modifies the phase transition to a smooth crossover
at way larger chemical potentials and stabilizes the order parameter. This distinction is
very important for the description of neutron star matter. In neutron stars, densities up
to five times nuclear saturation density are reached [39, 40]. If the model used to describe
the interior were to display a chiral restoration in this density range, which cannot be
treated with the ChNM model, it is not suited to describe neutron star matter. Therefore,
without taking the vacuum term into account a description of neutron stars is not possible
using a mean-field model.
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FIG. 4. Chiral order parameters in symmetric nuclear matter at T = 0 as a function of baryon chemical potential µ. Legends
are the same as in Fig. 3.

on the selected parametrisation which includes a certain
amount of freedom.

As already pointed out the FRG framework is richer
in dynamical content than EMF. Beyond nucleonic zero-
point energies it includes loop e↵ects from pions, sigma

bosons and nucleons on the chiral potential U (0)
k=0. These

mechanisms shift the chiral transition to even higher den-
sities.

The high-density behaviour of h�i, shown for the EMF
and FRG scenarios in Fig. 5, suggests a smooth chiral
crossover around n ⇠ 6 n0 for EMF and at even much
higher densities for FRG. Of course, at such high densi-
ties nucleons supposedly overlap and release their quark
contents. Also, the ChNM model was adjusted to repro-

duce properties of the liquid-gas phase transition and the
potential was expanded around �0 = 1/2 f

2
⇡ . Hence, if

h�i becomes too small the model reaches its limit of ap-
plicability. However, the qualitative feature of a chiral
crossover induced by fluctuations, instead of a first-order
chiral phase transition, is expected to persist.

B. Neutron matter

As a prerequisite before entering the discussion of chi-
ral phases in neutron matter, Fig. 6 shows the energy per
particle at low density calculated using the EMF and
FRG schemes, in comparison with results of calculations

[Brandes, Kaiser, Weise, arXiv:2103.06096]

-First-order chiral transitions unstable against fluctuations

-Second-order transition in chiral limit, crossover otherwise

Chiral nucleon meson model, also chiral quark meson model



QCD-inspired (symmetry!) models exhibit inhomogeneous phases, what about…QCD?
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Motivation

Low temperature and high density: phase diagram not yet accessi-

ble with lattice QCD, present understanding mostly based on QCD-

inspired models.

Recent model studies suggest an inhomogeneous phase at low tem-

peratures and high density (cf. Fig. 2 right).

Is such an inhomogeneous phase also present in QCD? If yes, our

current picture of the QCD phase diagram would drastically change ...

Questions

• What is the energetically preferred shape of the chiral order pa-

rameter?

• Is the inhomogeneous phase stable under thermal and quantum

fluctuations?

• What is the dependence of the inhomogeneous phase and the

order of the phase transitions on quark masses and isospin and

strangeness chemical potentials?

State of Research

QCD-inspired models predict a region in the phase diagram, where an

inhomogeneous condensate is energetically favored (Fig. 1 left, Fig. 2).

• Inhomogeneous phase covers first-order “homogeneous phase

boundary”, critical point replaced by a “Lifshitz point”.

• Inhomogeneous phase remarkably robust against variations of

the models (Buballa & Carignano, 2015).

Existence of inhomogeneous phase confirmed by a recent QCD/

Dyson-Schwinger equation (DSE) calculation (Fig. 1 right).
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Figure 1: Phase diagram with inhomogeneous region. Left: NJL model (Nickel

2009). Right: Dyson-Schwinger QCD study (Müller et al., 2013).

Energetically preferred shapes of the condensate:

In certain 1 + 1 dimensional models (e.g. Gross-Neveu model) ener-

getically preferred shape of the condensate analytically known.

Not known, however, in 3 + 1 dimensional models (at the moment only

studies for restricted sets of Ansatz functions).

Dependence on quark masses and chemical potentials:

Most studies for two quark flavors in the chiral limit with isospin sym-

metric matter.

Dependence of inhomogenous phase on quark masses and isospin

and strangeness chemical potentials only studied for few cases, but

not systematically, i.e. varying the parameters over a wide range.

Quantum and thermal fluctuations:

Investigations either in mean-field approximation or in “extended

mean-field approximation” (where quantum and thermal fluctuations

are partly taken into account).

However, not yet any systematic analysis of inhomogeneous phase,

where fluctuations are incorporated in a selfconsistent way (e.g. via

the Functional Renormalization Group (FRG)).

Project Plan

Compute energetically preferred shapes of the condensate:

Brute force numerical minimization of effective action with respect to

fields and condensates via lattice field theory and related methods:

no Ansatz required,

studies will be extended from 1+1 to 3+1 dimensions (Fig. 2).
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Figure 2: Numerical minimization of the effective action, Gross-Neveu model,

1+1 dimensions (Wagner 2007). Left: Phase diagram. Right: Condensates.

Study the impact of quantum and thermal fluctuations:

XXXXX Dirk + Stefan XXXXX

(collaboration with A06).

Investigate influence of gluon degrees of freedom:

Employ QCD DSEs.

Analyze relation between critical and Lifshitz point.

Improve truncation towards selfconsistent gluon dressing.

Validate truncation schemes by comparison with lattice QCD results at

µq = 0 (contact to A01 and A04).

Explore dependence on quark masses and chemical potentials:

Use lattice field theory and related methods, FRG, and DSEs to study

quark masses (large masses: contact to A02),

strange quarks (limit of three light flavors: possible contact to A01),

isospin and strangeness chemical potentials.
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NJL, Gross-Neveu (1+1d),               :  

Chiral condensate varies in space  
 
Robust under change of model details

[Nickel 2009]

QCD 
Dyson Schwinger

 [Wagner 2007]

Inhomogeneous phases
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Gross-Neveu, systematic investigations
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Figure 2: Phase diagram of the 1 + 1-dimensional GN
model for Nf = 8 (SLAC fermions, a ⇡ 0.410/�0,

Ns = 63; figure taken from Ref. [1]). The homogeneously
broken phase, the symmetric phase and the

inhomogeneous phase are colored in red, green and blue,
respectively. For comparison also the Nf ! 1 phase

boundaries are shown as gray lines.

(see Fig. 2).
The GN model can be solved analytically in the semi-

classical approximation or, equivalently, in the limit
Nf ! 1 (see e.g. Refs. [20, 27, 46, 47]) and it is known
that extrema of the e↵ective action

Se↵ =
1

2g2

Z
d2x �2

� ln detD , (14)

which one obtains by using L� from Eq. (2) and integrat-
ing over the fermions in the partition function, are not
only given by � = const. For example in Ref. [20] it was
shown that at large chemical potential and small temper-
ature a spatially oscillating function �(x) minimizes the
free energy. For each cycle of the oscillation Nf fermions
or antifermions, which can be interpreted as baryons,
are located in the region of minimal �2, i.e. where the
sign of � changes. This implies breaking of translational
symmetry and a crystal of baryons (as shown in Fig. 3).
In the present work we investigate, whether traces

of such a baryonic crystal are also present in the GN
model with a finite number of fermion flavors. For all
plots shown in the following we performed computations
with Nf = 8 flavors of SLAC fermions, lattice spacing
a ⇡ 0.410/�0 and Ns = 63 lattice sites in spatial direction,
corresponding to a periodic spatial direction of extent
L = Nsa ⇡ 25.8/�0. We use the same lattice setup and
rational HMC algorithm as in our preceding paper and
refer for technical details to Ref. [1] and to Appendix C in
Ref. [48], where the same setup was used. Not addressed in
these references is the issue of possibly existing exceptional
configurations with zero modes of the Dirac operator,
which cannot be ruled out. We note, however, that we are
not considering a gauge theory, where such zero modes are
protected by topology. Indeed we did not encounter any
problems in our simulations, which indicate the presence

Figure 3: Nf ! 1 results from Ref. [47] for the
condensate �(x) and the baryon density nB(x) at

(µ/�0, T/�0) = (0.700, 0), i.e. inside the inhomogeneous
phase (see Ref. [47], Eqs. (54) and (80)).

of exceptional configurations in our ensembles. Note that
there is also no sign problem, even for µ 6= 0, because
the determinant of the Dirac operator D in Eq. (2) for
Nf = 8 is always real and non-negative (see Ref. [1] for
details).
From the extensive set of simulations we carried out

in Ref. [1] for di↵erent a and L, we expect that both
lattice discretization errors and finite volume corrections
are small. In particular we observed that the size and
shape of the inhomogeneous phase is stable, even when
varying the lattice spacing by a factor of ⇡ 2 and the
spatial volume by a factor of ⇡ 4 (see Fig. 8 in Ref. [1]).
This clearly indicates that the inhomogeneous phase is not
an artifact of either the finite lattice spacing or the finite
spatial volume. Note that in Ref. [1] we also performed
computations with Nf = 8 flavors of naive fermions, to
check and to confirm our numerical results.

A. Correlation of the baryon density and the
condensate

We start by investigating the location of the fermions
relative to the spatially oscillating condensate inside the
inhomogeneous phase. It is important to note that the
e↵ective action (14) is invariant under spatial transla-
tions. Therefore, field configurations, which are spatially
shifted relative to each other, i.e. �(t, x) and �(t, x+ �x),
contribute with the same weight e�Seff to the partition
function and, thus, should be generated with the same
probability by the HMC algorithm. Consequently, simple
observables like h�(x)i or hnB(x)i, where

nB =
i ̄�0 

Nf
, (15)

are not suited to detect an inhomogeneous condensate
or baryon density in a lattice simulation, because de-
structive interference should lead to h�(x)i = 0 and

[Lenz et al., PRD 20]

First fully non-perturbative lattice observation
of an inhomogeneous phase!
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1 + 1d, Nf = 8

Figure 1: Line of LPs (which coincide with the TCPs if the analysis is restricted to homogeneous
phases) given by Eq. (73) and Eq. (74) for continuously varied cuto↵ parameters ⇤ (solid line).
The dots indicate specific values of ⇤.

denoted by a and the number of lattice sites is N
2
s , i.e., Ns lattice sites in each of the two

directions and L = Nsa. Since we are interested in studying spontaneous chiral symmetry
breaking, it is essential to use a chirally symmetric fermion discretization. We decided to use
the naive discretization (see, e.g., the textbook [42]). Naive fermions imply fermion doubling, i.e.,
in our case of two spatial dimensions the number of fermion flavors Nf is restricted to multiples
of 4. For our work this is not a problem, because we are interested in the limit Nf ! 1.

The extent of the temporal direction corresponds to the inverse temperature � = 1/T and
boundary conditions are antiperiodic. In temporal direction we do not use lattice field theory,
but regularize the fermion fields by a superposition of 2N0 plane waves as discussed in detail
below and in Refs. [19,28]. Since the chiral condensate does not depend on x0, i.e., � = �(x) as
discussed in previous sections, plane waves allow straightforward analytical simplifications of the
fermion determinant. Moreover, the chemical potential can be introduced as in the continuum
by adding �0µ to the Dirac operator. In particular an exponential coupling as typically used in
lattice field theory is not necessary. As a consequence we expect smaller discretization errors
(see Ref. [30] for a detailed discussion).

4.1.1 Free fermions

We define the plane-wave expansion of a fermion field representing a single flavor as

 (x0,x) =
N0X

n0=�N0+1

1
p
2N0

 (n0,x)e
i!n0x0 , (75)

where 2N0 represents the number of modes used in temporal direction. The frequencies
!n0 = 2⇡(n0 � 1/2)/� with n0 = �N0 + 1,�N0 + 2, . . . ,+N0 � 1,+N0 imply antiperiodic

15
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2 + 1d, Nf = 1 [Buballa et al., PRD 21]

Stability analysis continuum: 
Inhomogeneous phase depends on UV cutoff

Lattice: 
Inhom. phase discretisation-dependent,  
so far no sign of it when cutoff is removed



Conjectured large       phase diagram emerges smoothly in heavy QCD     

Baryon matter consistent with quarkyonic matter:                
(through three orders in       expansion) 

No phase transition to quarkyonic matter besides nuclear liquid gas! 
 

large Nc�!

µB�mB
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General      and quarkyonic matter in 3+1d QCD 
[O.P., Scheunert, JHEP 19]

[Pisarski, McLerran, NPA 07]
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p ⇠ Nc

Wilson LQCD with heavy quarks
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The large       phase diagram and QCD

[McLerran, Pisarski, NPA 2007]

Nc = 1
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and develop a simple model for the EOS.
The key elements of the Quarkyonic picture are il-

lustrated in Fig. 1. Here fQ is momentum distribution
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FIG. 1. The schematic shows the distribution of momentum
and energy of quarks and baryons. The di↵use distribution
of quarks in the right upper graph indicates they are confined
inside baryons.

function or quarks and EQ is their energy. The momen-
tum distribution is smeared at the surface because these
quarks are confined inside baryons which fill states with
momentum width �. Since baryons occupy states near
the Fermi surface they produce a gap in the quark excita-
tion spectrum. The absence of low energy quark excita-
tions will have implications for the transport properties
which we discuss later.

At extremely high density, Quarkyonic Matter is in-
ferred from the properties of QCD when Nc is large. In
this limit confining forces are important when the De-
bye screening mass generated by quark loops is less than
the confinement scale ⇤QCD. Since the color Debye mass
mD ' gµQ where µQ is quark chemical potential and
g is the gauge coupling, by noting that g2Nc is held
fixed when taking the large Nc limit we can conclude
that quarks are confined into baryons for µ .

p
Nc⇤QCD.

This observation that quark matter remains confined up
to a quark chemical potential parametrically large (by
the factor

p
Nc) compared to the confinement scale is

the central tenet of the Quarkyonic picture [19].
To realize these ideas in a concrete example we will

consider symmetric matter characterized by a finite
baryon chemical potential µB and the isospin chemical
potential µI = 0. Further, we assume that chiral symme-
try remains broken to set the quark mass MQ = MN/Nc

as in the constituent quark model, and the quark chemi-
cal potential µQ = µB/Nc. In the absence of interactions,
nucleons will appear in the ground state when µB > MN

and their number density will increase with µB until the
Fermi momentum kFB & ⇤QCD. Because MN is large, at
first, the nucleon number density increases rapidly with
µB . However, when quarks appear, and occupy low mo-
mentum states below the shell, the growth of the baryon

density with µB is reduced. In this model the baryon
number density

nB =
2

3⇡2

�
k3FB � (kFB ��)3 + k3FQ

�
, (2)

where kFB is the Fermi momentum of nucleons and the
Fermi momentum of quarks

kFQ =
(kFB ��)

Nc
⇥(kFB ��) . (3)

so that the contribution of quarks relative to nucleons is
suppressed by 1/N3

c . The energy density is given by

✏(nB) = 4

Z kFB

NckFQ

d3k

(2⇡)3
p

k2 +M2
n ,

+ 2⇥Nc

Z kFQ

0

d3k

(2⇡)3

q
k2 +M2

q . (4)

The chemical potential and pressure are obtained from
the familiar thermodynamic relations µB = @✏/@nB and
P = �✏+ µBnB , respectively.
From Eq. 2 we see that nB increases less rapidly in

the Quarkyonic phase. The resulting suppression of the
susceptibility �B = dnB/dµB leads to a rapid increase
in the speed of sound and is shown as the solid blue
curve in Fig. 2. The dashed blue curve shows c2s in non-
interacting nuclear matter for density nB . 3n0. The
black curves correspond to asymmetric matter containing
only neutrons and will be discussed later.
In our model we assume the thickness of quark Fermi

surface where nucleons reside to be given by

� =
⇤3

k2FB
+ 

⇤

N2
c

(5)

This choice is not entirely arbitrary. The first term
ensures that the nucleon density approximately satu-
rates when baryons dominate, and the second term is
needed to ensure that c2S < 1. It is useful to note
that when ⇤ < kFB < Nc⇤ the density of nucleons
nN / k2FB� ⇡ ⇤3 and when kFB > Nc⇤ the nucleon
density nN / k2FB� ⇡ ⇤k2Q. We set ⇤ = 300MeV
and  = 0.3 to obtain the results shown in Fig. 2. The
rapid increase in the sound velocity for kFB & ⇤ is a
robust prediction of the Quarkyonic phase but its evolu-
tion with density depends sensitively on the details. For
our ansatze the location of the maximum of cS is largely
determined by ⇤ and its magnitude depends both on ⇤
and .
The transition from nuclear matter to the Quarkyonic

phase is second-order in our simple model. The speed of
sound is continuous but its derivative is not. As quarks
appear, pressure remains a smooth, but a more rapidly
increasing function of the energy density. Quite the op-
posite of the behavior encountered in simple models of
the quark-hadron transition, where the transition from

Quarkyonic matter:

[from McLerran, Reddy, PRL 2019]

Application to compact stars

Relative size depends on      ,  
interpolates between baryon and quark matter 

µB
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baryons heavy

?

investigate with 3d effective theory!
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New emerging chiral spin symmetry

New emerging symmetries?

For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]
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FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.
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At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
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SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by
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both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

Chiral spin trafo: 
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we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

SU(4)
<latexit sha1_base64="mOzrIJQwlGsARy52WY0egI8lj1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGI0RUS2JBu6UJD2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWcKkJ9EvNYdUKsKWeS+oYZTjuJoliEnLbD8c3Mbz9RpVksH8wkoYHAQ8kiRrCxkn/vVxvn/XLFrblzoFXi5aQCOVr98ldvEJNUUGkIx1p3PTcxQYaVYYTTaamXappgMsZD2rVUYkF1kM2PnaIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnms17yLWv2uUWle53EU4QROoQoeXEITbqEFPhBg8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCQZI3d</latexit>

9
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cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
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Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

Test with spatial correlators (screening masses)

JLQCD configurations

Nf = 2 DW , N⌧ = 4, 6, 8, 12
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physical light quark masses

[Rohrhofer et al., 19], parallel

Degeneracy pattern and exponentials incompatible with free quarks:  “stringy fluid” for                                   Tpc < T < 900 MeV
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CS larger than, and contains, chiral symmetry

No symmetry of action:  
E-interactions invariant
B-interactions not invariant                            

New emerging symmetries?

For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]

12

0.0 0.5 1.0 1.5 2.0
zT

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
(n

z) 
/ 
C

(n
z=

1
)

PS
S
Vx
Ax
Tt
Xt

220 MeV
32x8

0.0 0.5 1.0 1.5 2.0
zT

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
(n

z) 
/ 
C

(n
z=

1
)

380 MeV
32x8

full QCD PS, S

free PS, S

full QCD Tt, Xt

free Vx, Ax

free Tt, Xt

full QCD Vx, Ax

0.0 1.0 2.0 3.0 4.0
zT

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
(n

z) 
/ 
C

(n
z=

1
)

960 MeV
32x4

FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by
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and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =
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†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

SU(4)
<latexit sha1_base64="mOzrIJQwlGsARy52WY0egI8lj1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGI0RUS2JBu6UJD2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWcKkJ9EvNYdUKsKWeS+oYZTjuJoliEnLbD8c3Mbz9RpVksH8wkoYHAQ8kiRrCxkn/vVxvn/XLFrblzoFXi5aQCOVr98ldvEJNUUGkIx1p3PTcxQYaVYYTTaamXappgMsZD2rVUYkF1kM2PnaIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnms17yLWv2uUWle53EU4QROoQoeXEITbqEFPhBg8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCQZI3d</latexit>
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as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
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NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
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Obviously this is the lattice version of the continuum form in Eq. (1).
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Test with spatial correlators (screening masses)

JLQCD configurations

Nf = 2 DW , N⌧ = 4, 6, 8, 12
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physical light quark masses

[Rohrhofer et al., 19], parallel

Degeneracy pattern and exponentials incompatible with free quarks:  “stringy fluid” for                                   Tpc < T < 900 MeV
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<latexit sha1_base64="kl60Tu7zK4cRDSg1SM+zFVf8esE=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexGQU8S9OIxQl6QLGF2MkmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnJr6xubW/ntws7u3v5B8fCoaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38381hPXRkSqjpOY+yEdKjEQjKKV2vWbei+N2bRXLLlldw6ySryMlCBDrVf86vYjloRcIZPUmI7nxuinVKNgkk8L3cTwmLIxHfKOpYqG3Pjp/N4pObNKnwwibUshmau/J1IaGjMJA9sZUhyZZW8m/ud1Ehxc+6lQcYJcscWiQSIJRmT2POkLzRnKiSWUaWFvJWxENWVoIyrYELzll1dJs1L2LsqVh8tS9TaLIw8ncArn4MEVVOEeatAABhKe4RXenEfnxXl3PhatOSebOYY/cD5/AOIsj94=</latexit>

9

New emerging symmetries?

For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]
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FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
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7

Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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Fermion number and colour-electric interactions invariant; medium (Lorentz frame) needed 

Combination with isospin                               can be embedded in
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
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(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
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The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

Test with spatial correlators (screening masses)

JLQCD configurations

Nf = 2 DW , N⌧ = 4, 6, 8, 12
<latexit sha1_base64="WCxPcoRWAvhIroOHWLI7m8IH6Ow=">AAACDHicbVDLSgMxFM3UV62vqks3wSK4GMpMLVoohaIuXJUK9gGdYcikmTY08yDJiGXoB7jxV9y4UMStH+DOvzFtZ6GtBwKHc87l5h43YlRIw/jWMiura+sb2c3c1vbO7l5+/6Atwphj0sIhC3nXRYIwGpCWpJKRbsQJ8l1GOu7oaup37gkXNAzu5Dgito8GAfUoRlJJTr7QcLxayapavhs+JNediVXVYcOxJIprZf1cr+hmSaWMojEDXCZmSgogRdPJf1n9EMc+CSRmSIieaUTSThCXFDMyyVmxIBHCIzQgPUUD5BNhJ7NjJvBEKX3ohVy9QMKZ+nsiQb4QY99VSR/JoVj0puJ/Xi+WXsVOaBDFkgR4vsiLGZQhnDYD+5QTLNlYEYQ5VX+FeIg4wlL1l1MlmIsnL5N2qWieFUu35UL9Mq0jC47AMTgFJrgAdXADmqAFMHgEz+AVvGlP2ov2rn3MoxktnTkEf6B9/gCfd5jH</latexit>

physical light quark masses

[Rohrhofer et al., 19], parallel

Degeneracy pattern and exponentials incompatible with free quarks:  “stringy fluid” for                                   Tpc < T < 900 MeV
<latexit sha1_base64="9SEKamZAH3BuTG/0eKAtLG/eCN0=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiRVULGLohs3QoW+oAlhMp20Q2eSMDMRSwhu/BU3LhRx61e482+ctllo64ELh3Pu5d57/JhRqSzr21hYXFpeWS2sFdc3Nre2zZ3dlowSgUkTRywSHR9JwmhImooqRjqxIIj7jLT94fXYb98TIWkUNtQoJi5H/ZAGFCOlJc/cb3hpjLNqo3phWdC5dLgfPaS3pJV5ZskqWxPAeWLnpARy1D3zy+lFOOEkVJghKbu2FSs3RUJRzEhWdBJJYoSHqE+6moaIE+mmkxcyeKSVHgwioStUcKL+nkgRl3LEfd3JkRrIWW8s/ud1ExWcuykN40SREE8XBQmDKoLjPGCPCoIVG2mCsKD6VogHSCCsdGpFHYI9+/I8aVXK9km5cndaql3lcRTAATgEx8AGZ6AGbkAdNAEGj+AZvII348l4Md6Nj2nrgpHP7IE/MD5/AKzjllU=</latexit>

T > Tpc
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New emerging symmetries?

For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]
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FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

Fermion number and colour-electric interactions invariant; medium (Lorentz frame) needed 

Combination with isospin                               can be embedded in

9

and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

SU(4)
<latexit sha1_base64="mOzrIJQwlGsARy52WY0egI8lj1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGI0RUS2JBu6UJD2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWcKkJ9EvNYdUKsKWeS+oYZTjuJoliEnLbD8c3Mbz9RpVksH8wkoYHAQ8kiRrCxkn/vVxvn/XLFrblzoFXi5aQCOVr98ldvEJNUUGkIx1p3PTcxQYaVYYTTaamXappgMsZD2rVUYkF1kM2PnaIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnms17yLWv2uUWle53EU4QROoQoeXEITbqEFPhBg8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCQZI3d</latexit>
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Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:
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The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
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These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
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Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.
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New emerging symmetries?

For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]
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FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
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Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
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†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =
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is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

SU(4)
<latexit sha1_base64="mOzrIJQwlGsARy52WY0egI8lj1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGI0RUS2JBu6UJD2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWcKkJ9EvNYdUKsKWeS+oYZTjuJoliEnLbD8c3Mbz9RpVksH8wkoYHAQ8kiRrCxkn/vVxvn/XLFrblzoFXi5aQCOVr98ldvEJNUUGkIx1p3PTcxQYaVYYTTaamXappgMsZD2rVUYkF1kM2PnaIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnms17yLWv2uUWle53EU4QROoQoeXEITbqEFPhBg8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCQZI3d</latexit>
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transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)
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The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
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Obviously this is the lattice version of the continuum form in Eq. (1).
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Test with spatial correlators (screening masses)

JLQCD configurations

Nf = 2 DW , N⌧ = 4, 6, 8, 12
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physical light quark masses

[Rohrhofer et al., 19], parallel

Degeneracy pattern and exponentials incompatible with free quarks:  “stringy fluid” for                                   Tpc < T < 900 MeV
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New emerging symmetries?

For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]
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FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

SU(4)
<latexit sha1_base64="mOzrIJQwlGsARy52WY0egI8lj1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGI0RUS2JBu6UJD2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWcKkJ9EvNYdUKsKWeS+oYZTjuJoliEnLbD8c3Mbz9RpVksH8wkoYHAQ8kiRrCxkn/vVxvn/XLFrblzoFXi5aQCOVr98ldvEJNUUGkIx1p3PTcxQYaVYYTTaamXappgMsZD2rVUYkF1kM2PnaIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnms17yLWv2uUWle53EU4QROoQoeXEITbqEFPhBg8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCQZI3d</latexit>
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X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

Test with spatial correlators (screening masses)

JLQCD configurations

Nf = 2 DW , N⌧ = 4, 6, 8, 12
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Degeneracy pattern and exponentials incompatible with free quarks:  “stringy fluid” for                                   Tpc < T < 900 MeV
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New emerging symmetries?

For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]
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FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.
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correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.

In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now
study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt/CTt . The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a
violation of U(1)A. In the rhs. plot we show the ratio CAx/CTt . These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

7

Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<

:

�1�3 . . . Tx ,

�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<

:

�1�3�5 . . . Xx ,

�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
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Chiral spin trafo: 
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Fermion number and colour-electric interactions invariant; medium (Lorentz frame) needed 

Combination with isospin                               can be embedded in
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

SU(4)
<latexit sha1_base64="mOzrIJQwlGsARy52WY0egI8lj1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGI0RUS2JBu6UJD2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWcKkJ9EvNYdUKsKWeS+oYZTjuJoliEnLbD8c3Mbz9RpVksH8wkoYHAQ8kiRrCxkn/vVxvn/XLFrblzoFXi5aQCOVr98ldvEJNUUGkIx1p3PTcxQYaVYYTTaamXappgMsZD2rVUYkF1kM2PnaIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnms17yLWv2uUWle53EU4QROoQoeXEITbqEFPhBg8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCQZI3d</latexit>
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symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider
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X

nx,ny,nt
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†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

Test with spatial correlators (screening masses)

JLQCD configurations

Nf = 2 DW , N⌧ = 4, 6, 8, 12
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physical light quark masses

[Rohrhofer et al., 19], parallel

Degeneracy pattern and exponentials incompatible with free quarks:  “stringy fluid” for                                   Tpc < T < 900 MeV
<latexit sha1_base64="9SEKamZAH3BuTG/0eKAtLG/eCN0=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiRVULGLohs3QoW+oAlhMp20Q2eSMDMRSwhu/BU3LhRx61e482+ctllo64ELh3Pu5d57/JhRqSzr21hYXFpeWS2sFdc3Nre2zZ3dlowSgUkTRywSHR9JwmhImooqRjqxIIj7jLT94fXYb98TIWkUNtQoJi5H/ZAGFCOlJc/cb3hpjLNqo3phWdC5dLgfPaS3pJV5ZskqWxPAeWLnpARy1D3zy+lFOOEkVJghKbu2FSs3RUJRzEhWdBJJYoSHqE+6moaIE+mmkxcyeKSVHgwioStUcKL+nkgRl3LEfd3JkRrIWW8s/ud1ExWcuykN40SREE8XBQmDKoLjPGCPCoIVG2mCsKD6VogHSCCsdGpFHYI9+/I8aVXK9km5cndaql3lcRTAATgEx8AGZ6AGbkAdNAEGj+AZvII348l4Md6Nj2nrgpHP7IE/MD5/AKzjllU=</latexit>
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Conclusions

Putting it all together…what can we conclude?
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Not very tight yet…….but everything the lattice sees up to now fits into one picture:
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<latexit sha1_base64="n7JRzpv4tCkLhmqZbqQ6UCGHPns=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IvHiHlBsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rGsm3GCfkQHkoecUWOlx/qN2yuW3LI7B1klXkZKkKHWK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3Ua48XJaqt1kceTiBUzgHD66gCvdQgwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBoOmNXQ==</latexit>

µI
<latexit sha1_base64="d9Q0wU4mkGZJFEk4tZ4kWUiCXXM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF71VMG2hDWWz3bRLdzdhdyOE0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcjvzO09UaRbLR5MlNBB4JFnECDZW8vsiHdwPqjW37s6BVolXkBoUaA2qX/1hTFJBpSEca93z3MQEOVaGEU6nlX6qaYLJBI9oz1KJBdVBPj92is6sMkRRrGxJg+bq74kcC60zEdpOgc1YL3sz8T+vl5roOsiZTFJDJVksilKOTIxmn6MhU5QYnlmCiWL2VkTGWGFibD4VG4K3/PIqaTfq3kW98XBZa94UcZThBE7hHDy4gibcQQt8IMDgGV7hzZHOi/PufCxaS04xcwx/4Hz+AKoIjpY=</latexit>

?

?
?

?

mB
<latexit sha1_base64="oQIahf4GGJ0k6sJL55aNSutYM9w=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHEi8eI5gHJEmYns8mQeSwzs0JY8glePCji1S/y5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKfloJwkNBR5KFjOCrZMeRL/eL5X9ij8HWiVBTsqQo9EvffUGiqSCSks4NqYb+IkNM6wtI5xOi73U0ASTMR7SrqMSC2rCbH7qFJ07ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxTZgxmaSWSrJYFKccWYVmf6MB05RYPnEEE83crYiMsMbEunSKLoRg+eVV0qpWgstK9f6qXKvncRTgFM7gAgK4hhrcQQOaQGAIz/AKbx73Xrx372PRuublMyfwB97nDxYAjao=</latexit>

mB
<latexit sha1_base64="oQIahf4GGJ0k6sJL55aNSutYM9w=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHEi8eI5gHJEmYns8mQeSwzs0JY8glePCji1S/y5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKfloJwkNBR5KFjOCrZMeRL/eL5X9ij8HWiVBTsqQo9EvffUGiqSCSks4NqYb+IkNM6wtI5xOi73U0ASTMR7SrqMSC2rCbH7qFJ07ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxTZgxmaSWSrJYFKccWYVmf6MB05RYPnEEE83crYiMsMbEunSKLoRg+eVV0qpWgstK9f6qXKvncRTgFM7gAgK4hhrcQQOaQGAIz/AKbx73Xrx372PRuublMyfwB97nDxYAjao=</latexit>

m⇡/2
<latexit sha1_base64="kd8dlXMRS8fqzWTFIme7vp9iqUU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU92tgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61TJJqQpsk4YnuRNhQziRtWmY57ShNsYg4bUfju5nffqLasEQ+2omiocBDyWJGsHVSW/R7il3U+uWKX/XnQKskyEkFcjT65a/eICGpoNISjo3pBr6yYYa1ZYTTaamXGqowGeMh7ToqsaAmzObnTtGZUwYoTrQradFc/T2RYWHMRESuU2A7MsveTPzP66Y2vgkzJlVqqSSLRXHKkU3Q7Hc0YJoSyyeOYKKZuxWREdaYWJdQyYUQLL+8Slq1anBZrT1cVeq3eRxFOIFTOIcArqEO99CAJhAYwzO8wpunvBfv3ftYtBa8fOYY/sD7/AG0C48m</latexit>

Not very tight yet…….but everything the lattice sees up to now fits into one picture:
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Neutron stars


