The QCD phase diagram: from heavy ion collisions to neutron star mergers

Owe Philipsen

Three exciting years: 2019-2021
Breakthrough for chiral transition in the massless limit ?

- Increased overlap + cooperation between lattice and functional communities

The QCD phase diagram

from GSI

Fundamental for particle-, nuclear-, astro- physics and cosmology, textbook knowledge!
Non-perturbative nature/confinement prevents perturbative solution
"Sign problem" prevents Monte Carlo simulation (NP-hard problem?)

The nature of the QCD thermal transition at zero density

chiral p.t.
restoration of global symmetry in flavour space
$S U(2)_{L} \times S U(2)_{R} \times U(1)_{A}$
 anomalous

Can a trace of the chiral transition (scaling) be detected experimentally?

Heavy mass corner: bench mark for effective theories

$\mathbf{Z}(3)$ symmetry explicitly broken by $\frac{1}{m_{q}}$
Deconfinement transition weakens, disappears at $\frac{1}{m_{q}^{c}} \Leftrightarrow m_{\pi}^{c}$
Lattice determination in progress: $m_{\pi}^{c} \approx 4 \mathrm{GeV}$ [WHOT, Frankfurt]

Dyson-Schwinger study $m_{q}^{c} \approx 460 \mathrm{MeV}$ [Fischer, Luecker, Pawlowski, PRD I5]

Effective lattice theory for heavy quarks within 12% of full result
[Fromm et al., JHEP I2; Kim et al. LAT 2I]

Also applicable to finite μ_{B}
Nuclear liquid gas transition from QCD! [Fromm et al., PRL I2]

Cuteri, O.P., Schön, Sciarra, PRD 21

The nature of the QCD chiral transition

....is elusive, massless limit not simulable!

Coarse lattices or unimproved actions: Ist order for $N_{f}=2,3$

- Ist order region shrinks rapidly as $a \rightarrow 0$

Improved staggered actions: no Ist order region so far, even for $N_{f}=3 m_{P S}>45 \mathrm{MeV}$

Details and references: [O.P., Symmetry I3, 202I]

From the physical point to the chiral limit

[HotQCD, PRL I9] HISQ (staggered)

[Kotov, Lombardo,Trunin, PLB 2I] Wilson twisted mass

$$
T_{p c}\left(m_{l}\right)=T_{c}^{0}+K m_{l}^{1 / \beta \delta}
$$

$$
T_{c}^{0}=134_{-4}^{+6} \mathrm{MeV}
$$

- Keep strange quark mass fixed, crossover gets stronger as chiral limit approached

Cannot distinguish between $\mathrm{Z}(2)$ vs. $\mathrm{O}(4)$ exponents, need exponential accuracy!

- Determination of chiral critical temperature possible, but not the order of the transition

Comparison with fRG: $T_{c}^{0} \approx 142 \mathrm{MeV}$, "most likely $\mathrm{O}(4)$ " [Braun et al., PRD 20,2।]

Nature of chiral transition as function of N_{f}

[Cuteri, O.P., Sciarra, JHEP 2I] $\quad N_{\mathrm{f}} \in[2,8]$ standard staggered
$\mapsto \quad N_{\tau}=4 \quad \vdash \quad N_{\tau}=6 \quad \mapsto \quad N_{\tau}=8$

$\mapsto \quad N_{\mathrm{f}}=3 \quad \vdash-N_{\mathrm{f}}=4 \quad \mapsto \quad N_{\mathrm{f}}=5$
$\vdash N_{\mathrm{f}}=6 \quad \vdash$ - $\quad N_{\mathrm{f}}=7 \quad \vdash \vdash \quad N_{\mathrm{f}}=8$

- Tricritical endpoints+scaling of chiral critical boundary

Known exponents, i.e. chiral extrapolation is possible!

- Finite $N_{\tau}^{\text {tric }}\left(N_{f}\right)$ implies second-order transition in chiral continuum limit!

$\mathrm{Nf}=3 \mathrm{O}(\mathrm{a})$-improved Wilson fermions

[Kuramashi et al. PRD 20]

$$
m_{\pi}^{c} \leq 110 \mathrm{MeV} \quad N_{\tau}=4,6,8,10,12
$$

Re-analysis using: $a m_{P S}^{2} \propto a m_{q}$

[Cuteri, O.P., Sciarra, JHEP 2 I]
Tricritical scaling, Nf=3 consistent with staggered, $2 n d$ order in continuum!

The emerging final(?) Columbia plot

Chiral limit and the physical point

The "standard scenario": [Halasz et al., PRD 98; Hatta, Ikeda, PRD 03...]

Importance of the chiral limit!

$$
\frac{T_{p c}\left(\mu_{B}\right)}{T_{p c}(0)}=1-\kappa_{2}\left(\frac{\mu_{B}}{T_{p c}(0)}\right)^{2}+\ldots
$$

κ_{2}		
$0.0158(13)$	imag. μ, stout-smeared staggered	[Bell
$0.0135(20)$	imag. μ, stout-smeared staggered	[Bo
$0.0145(25)$	Taylor, stout-smeared staggered	[Bo
$0.016(5)$	Taylor, HISQ	[Ho

Bellwied et al, PLB I5] [Bonati et al, NPA 19] [Bonati et al, PRD I8] [HotQCD, PLB I9]

$$
T_{p c}>T_{c}>T_{\text {tric }}>T_{\text {cep }}
$$

$$
\mu_{B}^{\text {cep }}>3.1 T_{p c}(0) \approx 485 \mathrm{MeV}
$$

Critical endpoint: reweighting LQCD revisited

[Borsanyi et al., arXiv:2 108.092 I3]

Fodor, Katz result from 2001 shows gap of rooted staggered fermions, not phase transition [Giordano et al., PRD 20]

- New treatment rooted determinant + reweighting in sign only [Giordano et al.JHEP 20]

Simulation with stout-sm. staggered action, $N_{\tau}=6:$ no sign of criticality for $\mu_{B}<2.5 T$

Critical endpoint: DSE and fRG

[Fischer, PPNP 19]

[Fu, Pawlowski, Rennecke, PRD 20]

- Quantitative agreement with lattice for curvature $T_{p c}\left(\mu_{B}\right)$
- Critical endpoint seen in current truncations, location consistent with lattice bounds
- Checked for stability under meson backcoupling [Bernhardt et al.PRD 2I]

Same result with hybrid approach DSE+fRG [Gao, Pawlowski, arXiv:2| I2.0|395]

Another possible scenario

Chiral limit: all second order
Physical masses: all crossover

- Consistent with all available lattice results

Predicted by some models:
[Brandes, Kaiser, Weise, arXiv:2 I 03.06096]

Chiral nucleon meson model, also chiral quark meson model
-First-order chiral transitions unstable against fluctuations
-Second-order transition in chiral limit, crossover otherwise

Inhomogeneous phases

QCD-inspired (symmetry!) models exhibit inhomogeneous phases, what about...QCD?

NJL, Gross-Neveu (I+Id), $N_{f}=\infty$:
Chiral condensate varies in space
Robust under change of model details

Gross-Neveu, systematic investigations

First fully non-perturbative lattice observation of an inhomogeneous phase!
$2+1 \mathrm{~d}, N_{f}=\infty$
[Buballa et al., PRD 21]

Stability analysis continuum:
Inhomogeneous phase depends on UV cutoff

Lattice:
Inhom. phase discretisation-dependent, so far no sign of it when cutoff is removed

General N_{c} and quarkyonic matter in 3+1d QCD

Wilson LQCD with heavy quarks

[O.P., Scheunert, JHEP I9]

[Pisarski, McLerran, NPA 07]

- Conjectured large N_{c} phase diagram emerges smoothly in heavy QCD
- Baryon matter consistent with quarkyonic matter: $p \sim N_{c}$ (through three orders in $\frac{1}{m_{q}}$ expansion)
No phase transition to quarkyonic matter besides nuclear liquid gas!

New emerging chiral spin symmetry

$S U(4) \supset S U(2)_{C S} \otimes S U(2) \supset S U(2)_{L} \times S U(2)_{R} \times U(1)_{A}$ CS larger than, and contains, chiral symmetry

No symmetry of action: E-interactions invariant B-interactions not invariant

Test with spatial correlators (screening masses)

$$
C_{\Gamma}\left(n_{z}\right)=\sum_{n_{x}, n_{y}, n_{t}}\left\langle\mathcal{O}_{\Gamma}\left(n_{x}, n_{y}, n_{z}, n_{t}\right) \mathcal{O}_{\Gamma}(\mathbf{0}, 0)^{\dagger}\right\rangle
$$

[Rohrhofer et al., PRD 19] JLQCD configurations
"stringy fluid" for $T_{p c}<T<900 \mathrm{MeV}$ physical light quark masses $\quad N_{f}=2 \mathrm{DW}, N_{\tau}=4,6,8,12$

Conclusions

$T \& \mathrm{QGP}$
stringy fluid

Conclusions

$T \uparrow$ QGP

