The EIC mission – Challenges for theory and experiment

Andreas Schäfer (many thanks to E. Aschenauer, F. Maas, ...)

- The EIC project is advancing fast, driven by broad international support, including massive commitments
- Why? The physics case of the EIC
- A few opportunities for Germany:
 - Technological competence: PANDA DIRC technology, ALICE Si detector technology, streaming DAQ, ...
 - Theory: Lattice QCD for joint fits, ...

Double Ring Design Based on Existing RHIC Facilities

Hadron Storage Ring: 40 - 275 GeV	Electron Storage Ring: 5 - 18 GeV	
RHIC Ring and Injector Complex: p to Pb	Many Bunches, Large Beam Current - 2.5 A	
1160 bunces @ 1A Beam Current 9 ns bunch spacing	9 MW Synchrotron Radiation	
Light ion beams (p, d, ³ He) polarized (L,T)	Polarized electron beams	
Nuclear beams: d to U	Electron Rapid Cycling Synchrotron	
Requires Strong Cooling: new concept \rightarrow CEC	Spin Transparent Due to High Periodicity	
High Luminosity Interaction Region(s)		
25 mrad Crossing Angle with Crab Cavities		

BNL and TJNAF Jointly Leading Process to Select Project Detector		
2020	Call for Expressions of Interest (EOI) https://www.bnl.gov/eic/EOI.php	May 2020
	EOI Responses Submitted	November 2020
	Assessment of EOI Responses	On-going
2021	Call for Collaboration Proposals for Detectors https://www.bnl.gov/eic/CFC.php	March 2021
	BNL/TJNAF Proposal Evaluation Committee	Spring 2021
	Collaboration Proposals for Detectors Submitted	December 2021
\checkmark	Decision on Project Detector	March 2022

The EIC User Group

The EIC is a truly international effort. Note the strong European engagement (CERN, Nov. 24).

Physics case (Yellow Report 2103.05419)

QCD is the phenomenologically richest sector of the standard model, encompassing many different highly active subfields.

- In energy these range from low, e.g. nuclear structure physics, to the highest available, e.g. Heavy-lon physics.
- In complexity these range from hard reactions of few partons, to manifold interference effects linked to the multi-particle wave function of a hadron.
- In theoretical tools these range from hydrodynamics to pQCD and Lattice QCD
- EIC has polarized beams!

Combining input from different sources holds a huge discovery potential. In addition to p+p and A+A one needs e+p and e+A with broad kinematic range: JLab@12GeV and EIC.

Impact plots from the Yellow Report I: PDFs and FFs

Results of a combined fit of PDFs and FFs for EIC pseudo data Aschenauer, Borsa, Sassot, Van Hulsen, 1902.10663 by NNPDF

Impact plots from the Yellow Report II: quark GPDs

Impact plots from the Yellow Report III: Gluon GPDs

Impact plots from the Yellow Report IV: quark Sivers distributions

The big question: Can the systematic uncertainties (theory and experiment) match this precision? The combination of global expertise is needed. An opportunity for German groups ?!

Experiment: The detector proposals ATHENA, CORE or ECCE

ATHENE: https://sites.temple.edu/eicatip6/

- spokesperson: S. Dalla Torre (INFN Trieste) deputy: B. Surrow, Temple Univ.
- ~ 100 collaborating institutions
- YR reference detector

CORE: https://eic.jlab.org/core/

- contacts: CH. Hyde (ODU) and P. Nadel-Turonski (JLab)
- ~ 20-30 collaborators

ECCE: https://www.ecce-eic.org

- leadership team: O. Hen (MIT), T. Horn (CUA), J. Lajoie (Iowa State)
- ~ 80 collaborating institutions

Advantages of second detector

- The EIC has a very broad physics spectrum and aims at very high precision ⇒ Two somewhat complementary detectors using different technologies are highly advantageous. For example: Optimized for different energy ranges, e+p versus e+A etc.
- Need for double-checks
- The option of having two differently optimized IRs.

DOE does not plan to finance the second detector (?!)

The second detector will come later.

Concrete examples. 1. PANDA hpDIRC

hpDIRC R&D Achievements:

Developed of EIC PID detector with momentum coverage reaching 6 GeV/c for π/K ;

Integrated in all EIC detector designs.

Validated performance in detailed Geant4 simulation Developed innovative 3-layer lens, built and validated radiation hard prototype

EIC-PANDA crew 2018 at CERN GEANT simulation

Concrete examples. 2. Monolithic Active Pixel Sensors

- ongoing R&D collaboration with CERN/ALICE ITS-3 (innermost tracking layer) development
- new development: low mass EIC ITS-3 based forward disks

Concrete examples. 3. Streaming readout

- baseline DAQ for EIC (and most future experiments)
- Large synergies, i.e. with GSI and LHC-b
- fully cognizant detectors, AI/ML integrated as close as possible to hardware.

Just one example: PANDA

- DMAPS "Depleted Monolithic Active Pixel Sensors"
- codeveloped by Bochum, Heidelberg, Karlsruhe, Mainz

The full streaming chain

- no trigger, very fast on-chip digital processing
- measuring differnt decay modes simultaneously
- Extensive tests at MAMI

4.) Theory: With novel lattice approaches formulated in recent years, lattice calculations can play a much more important role.

- X. Ji, PRL 110 (2013) 262002; arXiv:1305.1539 quasi-PDFs etc.
- Y.Q. Ma and J.W. Qiu PRD 98 (2018) 074021; arXiv:1404.6860 lattice cross sections
- A. Radyushkin, PRD96 (2017) 034025; arXiv:1705.01488 pseudo-PDFs etc.
- U. Aglietti et al. Phys.Lett. B441 (1998) 371; hep-ph/9806277
- V. Braun and D. Müller, EPJ C55 (2008) 349; arXiv:0709.1348
- A.J. Chambers et al., PRL 118 (2017) 242001; arXiv:1703.01153

• ...

I am a member of LPC (Y.B. Yang, X. Ji)

The idea in a nutshell

- What is needed are correlators along the lightcone $t \pm z$. These cannot be calculated on the lattice because of analytic continuation to Euclidean time $t \rightarrow -ix_4$ resulting in $e^{iS} \rightarrow e^{-S_E}$
- Old method: Mellin moments. $\int_0^1 dx x^{n-1} q(x)$ given by local correlators (Operator Product Expansion)
- Problem: Operator mixing
- New method: Calculate quasi-PDFs, quasi-TMDs, quasi- ... nonlocal in space and relate quasi-PDfs etc. to PDFs. etc. by continuum perturbation theory.
- The limit P_z → ∞ is problematic but the method seems to work better than expected.

Some results of ETMC 2106.16065

light quark PDFs, quasi-PDFs

the light quark PDFs

Lattice augmented transversity fits from JAM Lin et al. arXiv:1710.09858

Transversity PDFs $h_1^{u,d}$ and favored $zH_{1(fav)}^{\perp(1)}$ and un-favored $zH_{1(unfav)}^{\perp(1)}$ Collins FFs

A crucial theory input for the physics of TMDs: the Collins-Soper kernel The newest result from Beijing/ETMC 2106.13027 and MIT/ANL/BNL/FNL 2107.11930

Five groups using three different lattice approaches get compatible results (most reliable way to estimate systematic uncertainties)

Conclusions

- EIC, LHC, FAIR, ... are highly complementary. High-energy hadron physics has a bright future
- The EIC will explore many aspects of the many-particle wave functions of hadrons which are presently only poorly known or even unknown.
- EIC is moving forward very fast. Many commitments have already been made. There are three detector proposals: ATHENA, CORE, and ECCE. The plans are very ambitious and additional expert knowledge is still in high demand.
- Concrete examples for collaboration were given. Windows of opportunity for others will close in the not so distant future.
- Lattice QCD will be a complementary discovery tool.

A crucial theory input for the physics of TMDs: the Collins-Soper kernel arXiv:2103.16991

Estimated higher twist uncertainty $\delta K = 0.06$