

AMBER – A NEW QCD FACILITY AND OTHER QCD INITIATIVES AT CERN/SPS

Bernhard Ketzer

KHuK Jahrestagung 2021 10.Dezember 2021

m = 0 (Chiral limit

m = 30 MeV

m = 70 MeV

Rapid acquisition of mass is

p [GeV]

effect of gluon cloud

Understand hadron properties in terms of constituents: ٠

- masses: proton vs pion and kaon
- excitation spectrum
- structure: size, form factors, parton distributions

0.3

0.1

M(p) [GeV]

- confinement / deconfinement
- Input to precision collider observables, SM tests, BSM
- Quantitative theoretical approaches:
 - effective field theories
 - lattice QCD
 - continuum methods

Plot: dressed-quark mass function curves: DSE [Bhagwat et al., 2003/2006] data: LQCD [Bowman et al., 2005]

SIS NUCL

CERN SPS

- 1. NA66/AMBER A new QCD Facility at the M2 Beam Line (EHN2)
- 2. NA61/SHINE (EHN1)

New initiatives beyond LS3 (LoI)

1. AMBER Phase 2

CMS

- 2. NA61++
- 3. NA60++

SUISSE

RANCE

AMBER

evedo

Dhara

Apparatus for Meson and Baryon Experimental Research

- Successor experiment of COMPASS
- New groups (Yerivan, Bologna, Trento, Miyazaki, Chubu, Warsaw, • Gatchina, Moscow, Samara, Cordoba, Michigan, Virginia, Argonne, Los Alamos, Stony Brook)
- Lol 2018: arXiv:1808.00848 ٠
- Extension and upgrade of spectrometer ٠
- M2: most versatile beam line at CERN
- Conventional and RF-separated beams

Letter of Intent:

A New QCD facility at the M2 beam line of the CERN SPS^{*}

COMPASS++[†]/AMBER[‡]

Proposal for Measurements at the M2 beam line of the CERN SPS - Phase-1 -

SPSC 139, Oct. 2020

The Committee recommends approval of the proposal SPSC-P-360 by the AMBER Proto-Collaboration to use the M2 beam-line before LS3 to perform measurements related to:

(i) Drell-Yan and J/Psi production using the conventional M2 hadron beam; (ii) proton-induced antiproton production cross sections for dark matter searches; (iii) the proton charge radius using muon-proton elastic scattering.

The proton-radius program is contingent on a successful pilot run previously approved for the first year of SPS operation after the Long Shutdown LS2.

Phase-1 Proposal: CERN-SPSC-2019-022

- Submission 2019
- Approved as NA66 by the CERN Research Board in Dec 2020

Phase 2:

Proposal submission planned for 2022

V. Frolov¹³, A. Futch⁴³, F. Gautheron⁴³, O.P. Gavrichtchouk¹³, S. Gerassimov^{26,16}, S. Gevorkyan¹ Y. Ghandilyan⁵¹, J. Giarra²⁵, I. Gnesi^{42,43}, M. Gorzellik¹⁷, A. Grasso^{42,43}, A. Gridin¹⁵, M. Grosse Perdekamp⁴⁵, B. Grube¹⁸, R.I. Gushterski^{15,k}, A. Guskov¹⁵, G. Hamar⁴⁰, D. von Harrach²⁵, X. He³, R. Heitz⁴⁵, F. Herrmann¹⁷, M. Hoffmann⁸, N. Horikawa^{30,e}, S. Huber¹⁸, A. Inglessi¹⁹, A. Ilyichev² S. Ishimoto^{50,g}, A. Ivanov¹⁵, N. Ivanov⁵¹, T. Iwata⁵⁰, M. Jandek³¹, V. Jary³², C.-M. Jen²⁴, R. Joosten⁸, P. Jörg¹⁷, K. Juraskova³², E. Kabuß²⁵, A. Karpishkov³⁴, F. Kaspar¹⁸, D. Keller¹², A. Kerbizi^{39,40},
B. Ketzer⁸, G.V. Khaustov³³, Yu.A. Khokhlov^{33,h}, M. Kim¹, O. Kiselev¹⁶, Yu. Kisselev¹⁵, F. Klein⁹,
J.H. Koivuniemi⁴⁵, V.N. Kolosov³³, K. Kondo⁵⁰, I. Konorov^{28,18}, V.F. Konstantinov³³, A.M. Kotzinian^{43,j}, O.M. Kouznetsov¹⁵, A. Koval⁴⁷, Z. Kral³¹, F. Krinner¹⁸, Y. Kulinich⁴⁵, K. Kurek⁴⁷, R.P. Kurjata⁴⁹, A. Kveton³¹, S. Levorato⁴⁰, J. Lichtenstadt³⁶, K. Liu²⁴, M.X. Liu²⁴, R. Longo⁴⁵, W. Lorenzon¹, M.J. Losekamm¹⁸, V.E. Lyubovitskij^{41,m}, E. Maev¹⁹, A. Maggiora⁴³, V. Makarenko²⁶, N. Makins⁴⁵, N. Makke⁴⁰, G.K. Mallot²⁰, A. Maltsev¹⁵, S.A. Mamon⁴¹, B. Marianski⁴⁷, A. Martin^{39,40} H. Marukyan⁵¹, J. Marzec⁴⁹, N. Masi⁷, J. Matoušek^{39,40}, T. Matsuda²⁷, G. Mattson⁴⁵, G.V. Meshcheryakov¹⁵, W. Meyer⁵, M. Meyer⁴⁵, Yu.V. Mikhailov³³, M. Mikhasenko²⁰, M. Minot¹³,

AMBER PHASE 1 – PROTON RADIUS

History:

- 2017: Initial proposal by German groups
- First discussion within COMPASS-II
- 2018: Feasibility test
- 2018: AMBER LoI \Rightarrow PBC
- 2019: AMBER Proposal \Rightarrow SPSC
- 2021: Pilot run

PROTON CHARGE RADIUS - STATUS

	ер	μр
Scattering	 New measurements: Lower systematics Lower Q² 	Not measured yet MUSE @ PSI AMBER @ CERN
Spectroscopy	New measurements:Lower systematicsNew transitions	Done (CREMA)

Why μp scattering?

- different leptonic probe
- different systematic uncertainties
- much smaller radiative corrections than ep
- provide precise data for global fit

AMBER - MEASUREMENT OF PROTON RADIUS

Challenging measurement

- High-intensity 100 GeV μ beam: $2 \cdot 10^6 \text{ s}^{-1}$
- Simultaneous detection of scattered µ and recoil p
- Re-use upgraded COMPASS spectrometer
- H₂ active target TPC: up to 20 bar
- Free-streaming DAQ: minimize trigger bias, latency of TPC
- Goal: 70M ev. in $10^{-3} < Q^2 < 0.04 \text{ GeV}^2$
- Expected precision: $\lesssim 0.01 \text{ fm}$

Figure 45: Engineering design for the four-cell hydrogen TPC.

UNIVERSITÄT BONN

AMBER – PROTON RADIUS PILOT RUN 2021

- Prerequisite for proton-radius physics run
- Took place from 6 27 Oct. 2021
- Goals:
 - test high-pressure (8 bar) TPC prototype (IKAR) with high-intensity µ beam
 - test target tracking system (existing Silicon strip + SciFi)
 - test muon momentum reconstruction (only SM2)
 - test Silicon Pixel detectors (ALPIDE) with self-triggering readout
 - test GEM detector with self-triggering readout
 - test AMBER DAQ \Rightarrow to be done during winter shutdown
 - match muon and recoil proton tracks \Rightarrow analysis ongoing

AMBER PHASE 1 – PION PDF

PION STRUCTURE – CURRENT STATUS

- Scarce / old data: E615, NA3, NA10,...
- Mostly heavy nuclear targets \Rightarrow large nuclear effects
- Discrepancy between experiments
- Valence PDF poorly constrained
- Sea and gluon PDFs basically unknown
- More and precise data urgently needed

[Chang et al., Chin. Phys. Lett. 38 (2021) 081101]

PION VALENCE AND SEA QUARK PDFS AT AMBER

val

 \mathbf{N}

 Σ_{sea}

- Pion-induced Drell-Yan dimuon production
- Isoscalar ¹²C target \Rightarrow minimize nuclear effects
- π^+ and π^- beams \Rightarrow separate valence and sea

$$\Sigma_{\rm val} = -\sigma^{\pi^+} + \sigma^{\pi^-}$$
$$\Sigma_{\rm val} = 4\sigma^{\pi^+} - \sigma^{\pi^-}$$

B. Ketzer

only valence-valence

 $\Delta_{\rm sea} = 40$

sea-valence / valence-sea

Goals:

- 10× more data than currently available (25k DY events)
- First precise and direct measurement of the sea quark distribution in the pion

Setup:

- 190 GeV π beam
- Dedicated target, vertex detector, hadron absorber ٠
- Dimuon mass resolution ~ 100 MeV

AMBER / SPS

PION GLUON PDF AT AMBER

In parallel: study of J/ψ production: $\pi + A \rightarrow J/\psi + X$

- Dominated by $q\bar{q}, gg \rightarrow J/\psi$ at low $p_T < M(J/\psi)$ \Rightarrow access to gluon PDF of pion
- Cross section 30-50 × larger than DY

 \Rightarrow measure differential distributions with >1M ev.

- Measurement of (π^+, p) and π^-
- But: J/ψ production mechanism not well known at low p_T (CEM vs NRQCD)

Additional observable: J/ψ polarization

- $J^{PC} = 1^{--}, J_z = -1, 0, +1$
 - Angular distribution $\frac{d\sigma}{d\cos\theta} \propto 1 + \lambda\cos^2\theta$

$$\begin{array}{ll} - & \lambda = +1 \iff J_z = \pm 1 & q\bar{q} \to J/\psi \\ - & \lambda = 0 & \Leftrightarrow \text{unpolarized} \\ - & \lambda = -1 \iff J_z = 0 & gg \to J/\psi \end{array}$$

(qu)

¹ אלע מלקע 10²

10

Err (%)

AMBER PHASE 1 – ANTIPROTON PRODUCTION CROSS SECTION FOR DM SEARCHES

UNIVERSITÄT BONN

INDIRECT DM SEARCHES

AMS-02:

- Precise data on cosmic antiparticle flux
- Sources: SM processes and DM annihilation
- Limiting factor: \bar{p} production cross section uncertainties from collisions involving p and He (currently 30-50%!)
 - $p + p \rightarrow \overline{p} + X$ some measurements (NA49, NA61)
 - $p + {}^{4}He \rightarrow \bar{p} + X$ only LHCb at 4 TeV and 6.5 TeV

ANTIPROTON PRODUCTION AT AMBER

- Secondary p beam with 50, 100, 150, 200, 280 GeV
- Minimum bias trigger \Rightarrow beam intensity of $5 \cdot 10^5 \text{ s}^{-1}$
- Liquid H2 and He target
- Proton ID in CEDARs, antiproton ID in RICH
- Measure differential cross section in 10 bins in \bar{p} momentum and pseudorapidity $2.4 < \eta < 5.6$

 10^{0}

 10^{-1}

10-2

source term 200-2 source term

 10^{-4}

10⁰

 10^{1}

 $T_{\bar{p}}$ [GeV]

10²

contribution

p-He

- Statistical uncertainty $\approx 0.5 1\%$ per data point
- Total systematic uncertainty $\approx 5\%$ (efficiencies, dead time)

Plots: impact of measurements on constraining the production of \bar{p} (fraction of total source term constrained by phase space of experiment)

50-250 GeV 50-190 GeV 100-190 GeV

AMBER PHASE 1 - TIMELINE

UNIVERSITÄT	BONN

Year	Activity	Duration	Beam
2021	Proton radius test measurement	20 days	μ
2022			
2022	Proton radius measurement	120 (+40) days	μ
	Antiproton production test measurement	10 days	р
2023	Antiproton production measurement	20(+10) days	р
	Proton radius measurement	140 (+10) days	μ
2024	Drell-Yan: pion PDFs and charmonium production	$\lesssim 2$ years	$p, K^{+}, \pi^{+},$
2024+	mechanism		\bar{p}, K^-, π^-

Conventional muon and hadron beams

 $2021 \Rightarrow ~2028$

NEW EQUIPMENT FOR PHASE 1

- Triggerless DAQ and HLT (Freiburg, Mainz, Munich, Prague, Tomsk, Warsaw)
- High-pressure hydrogen TPC (PNPI, GSI, Glasgow)
- C/W, LH2, LHe target (Lisbon, CERN, Prague, Virginia, Yamagata)
- PRM SciFi/Silicon Pixel tracking stations (Freiburg, Munich, Torino)
- DY vertex detector (Argonne, Illinois, Los Alamos, Torino)
- Large-area MPGD detectors with self-triggering readout (Bonn, CERN EP-DT, Torino, JINR)
- Self-triggered electronics for ECAL (Munich, Trieste, Warsaw)
- Upgrade CEDAR electronics for high rates (CERN, Warsaw)

AMBER / SPS

QCD INITIATIVES BEYOND RUN3

AMBER PHASE 2 – LOI

Conventional and RF-separated beams

Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	$\mathrm{NH}_3^\uparrow,$ C/W	2026 2-3 years	"active absorber", vertex detector
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~ 100	$5 \cdot 10^6$	>10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^6$	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							
Spectroscopy	strange-meson	50-100	$5 \cdot 10^6$	25	K^{-}	LH2	2026	recoil TOF,
(RF)	spectrum						1 year	forward PID
	Spin Density							
Vector mesons	Matrix	50-100	$5 \cdot 10^6$	10-100	K^{\pm}, π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

q

g

C1

UNIVERSITÄT BONN

NA61++

Run-3: NA61/SHINE

- Detector upgrades for direct open-charm measurements
- Search for critical point of strongly interacting matter
- Hadron measurements for v and cosmic ray physics

Post-LS3: NA61++

- Fine-grained energy scan with light and mediummass ions to study onset of fireball
- Measurements of heavy hadron resonances in p-p interactions
- Measurements of hadron emission from LBNF and Hyper-K replica targets
- Data for flux predictions in n experiments using very low-energy beams

beam momentum [A GeV/c]

NA60++

Study of hard and electromagnetic processes at SPS at high μ_B

- Thermal dimuons from QGP \Rightarrow caloric curve of 1st-order phase transition
- ρa_1 modifications \Rightarrow chiral symmetry restoration
- Quarkonium suppression \Rightarrow deconfinement
- Production of charmed hadrons \Rightarrow QGP transport properties
- Strangeness production \Rightarrow QGP chemistry

Setup:

- Cover wide range of collision energies (Pb-Pb, p-A)
- Large interaction rates (> 10^5 Hz)
- Varying length of muon spectrometer
- New location: EHN1 H8
 - \Rightarrow no conflict with NA62 in ECN3
 - \Rightarrow impact of reduced intensity being studied
- Detector R&D: synergies with HL-LHC
- Starting to draft Lol

SUMMARY AND OUTLOOK

- NA66/AMBER is a new experiment at CERN dedicated to study fundamental questions related to the emergence of hadron properties from QCD
- Phase 1 approved by CERN
 - Proton radius with high-intensity muon beam
 - Pion PDFs in Drell-Yan processes
 - Antiproton-production cross sections for DM searches
- New initiatives on QCD-related measurements at SPS beyond LS3 being studied in the framework of PBC at CERN
 - **AMBER Phase 2**: kaon PDFs, strange spectroscopy, etc.
 - RF-separated beams to $M2 \Rightarrow$ worldwide unique facility
 - NA60+, NA61+: QCD phase diagram at high μ_B

https://home.cern/news/news/physics/meet-amber

