High Intensity Effects in a Circular Accelerators

OP School, 9 November 2021

G. Franchetti, GSI

Focusing element

Reference frame of beam dynamics

٧

<u>х</u>

Ideal motion: linear around the reference orbit

$$x'' + k_x(s)x = 0$$

Harmonic oscillator: k_x is the "strength" of the quadrupole. Set in LSA

G. Franchetti

S

 \mathcal{V}

LSA allows the settings of the elements strength: example

Example from H. Liebermann

 $x'' + k_x(s)x = 0$

 $\begin{array}{ll} K_0 > 0 & \text{Stable motion} & \hat{x} = \sqrt{\beta_x \epsilon_x} \sin(\omega s + \psi_0) \\ K_0 < 0 & \text{Unstable motion} & \swarrow & \swarrow & \uparrow & \uparrow \\ \beta_x = 1/\sqrt{K_0} & \quad \text{amplitude} & \text{Phase advance} & \text{initial} \\ \omega = \sqrt{K_0} & \quad \mu \text{ phase} \end{array}$

Coulomb Forces

C. Coulomb

Total Coulomb Forces on one particle

Regular Beam \rightarrow transverse profile

Horizontal / vertical

Transverse space charge forces

Space charge forces here are similar to those created by an ideal coasting beam

Space charge forces

Effect of high intensity on optics

LINEAR DE-FOCUSING FORCE

Naked lattice (what one ion alone sees)

Lattice with a High intensity beam (what one particle in the bea center Sees)

> The beam acts, via space charge, on the core particles like a uniformly distributed **defocusing quadrupole** !!

Effect of high intensity on optics

Naked lattice

$$x'' + k_x(s)x = 0$$

quadrupoles

High intensity beam: core particles

$$x'' + k_x(s)x - k_{SC,x}(s)x = 0$$
quadrupoles
Defocusing effect of
Space charge

Naked lattice

Lattice with a High intensity beam

9.11.21

Space charge tuneshift

9.11.21

Space Charge tuneshift

$$K = \frac{qI}{2\pi\epsilon_0 mc^3\beta^3\gamma^3} \checkmark$$

Relativistic gamma: with high energy is large

The perveance is a combination of

q = charge state M = ion mass $\gamma, \beta <=>$ the beam energy I = beam current

Different beams can have the same Perveance !!!

Example

Ning Orbitkorrektur (horizontal) Ring Orbitkorrektur (vertikal) Ring Extraktion Ring langsame Extraktion Ring Injektion Ring Orbitbaule (horizontal) Ring Orbitbaule (vertil Multiurn Injektion Injektionsenergie 11.048 MeV/u Ring Orbitbaule (horizontal) Ring Orbitbaule (horizontal) Ring Orbitbaule (horizontal) Ring Orbitbaule (vertil Multiurn Injektion Injektionseteifigkeit 92.1.13997592 Tm Azabi Injektionen I Targetenergie 1580.0 Md Injektionssteifigkeit 92.1.13997592 Tm Kühlerbump x (Position) 0.0 mm Extraktionssteifigkeit 9.18.479826429 Tm Hor. Arbeitspunkt QV (Inj.) 4.295 Kühlerbump x (Winkel) 0.0 mmad Hor. Arbeitspunkt QH (Fattop) 4.295 Bumper-Abfallzeit 1.0 mm Kühlerbump y (Winkel) 0.0 mmad Hor. Arbeitspunkt QV (Fattop) 3.28 Bumper-Abfallzeit 1.00 mm Iesem Mode 1 8adailage (Extraktion) 1.29 Bumper-Abfallzeit 0.0 mrad 100 mm Iesem Mode 1 8adailage (Extraktion) 1.29 Chopper-Kerseturwinkel 0.0 mrad 0.0 mrad Ieseptum Korrekturwinkel 0.2 mrad	rbitkorrektur (horizontal) Ring Orbitkorrektur (vertikal) al Suche AEG Tests
Multirum Injektion Multi-Multitum Injektion Extraktion Injektionsenergie 11.048 MeV/u Anzahl Injektionen 1 Injektionstefigkeit 92,113997592 Tm Kuhlzeit 16.0 ms Hor, Arbeitspunkt QH (Inj.) 4.295 Kuhlerbump x (Position) 0.0 mrad Hor, Arbeitspunkt QV (Inj.) 3.28 Kuhlerbump x (Winkel) 0.0 mrad Bumper-Abfallzeit 1.0 mm Kuhlerbump y (Position) 0.0 mrad Bumper-Abfallzeit 95.0 <mm< td=""> Kuhlerbump y (Winkel) 0.0 mrad Unilac-Verschiebung 45 µs Feichenzahl 1.0E9 Vert. Arbeitspunkt QV (Feittop) 3.29 Chopper-Verzoegerung 600 µs Pistor Feichenzahl 1.0E9 Vert. Arbeitspunkt QV (Extr.) 3.29 Chopper-Verzoegerung 600 µs Feichenzahl 1.0E9 Vert. Arbeitspunkt QV (Extr.) 3.29 GTK7MU5 Korrekturwinkel 0.0 mrad Feichenzahl 1.0E9 Vert. Arbeitspunkt QV (Extr.) 3.29 Gtszahlu3 Korrekturwinkel 0.0 mrad Feichenzahl 1.0E9 Vert. Arbeitspunkt QV (Extr.)</mm<>	
GS12MU3I Korrekturwinkel -0.2 mrad I-Septum Korrekturwinkel -1.4 mrad Langsame Extraktion Extraktionsbeule E-Septum Korrekturwinkel -2.5 mrad Verrundungszeit 32.0, 32.0 ms E-Septum Korrekturwinkel -2.0 mm	urn Injektion 11.048 MeV/u ionssteifigkeit 92,1.13997592 Tm ionsfrequenz 211.1856 kHz Arbeitspunkt QH (Inj.) 4.295 Arbeitspunkt QV (inj.) 3.28 ullage (injektion) -1.0 er-Abfallzeit 170 per-Verzoegerung 60 per-Fenster 100.0 per Korrekturwinkel 0.0
Extraktionszeit 2000.0 ms Harmonischenzahl 4 E-Septum-Bump (Delta) 3.0 mr Spillmitte 0.25 Rampensteilheit 3.0, 3.0 T/s M-Septum-Bump (Delta) 3.0 mr Spillamplitude 0.65 Einfangzeit 1.60 ms M-Septum-Bump (Delta) 0.0 mr Sextupol Amplitude 0.06 Impulsbreite (DC) 0.09 % ES/MS Bump (Anfang) 0.0 mr Sextupol Phase 20.0 deg Bucketfill (Bunching) 10.0, 1.43] ES/MS Bump (Delta) 0.0 mr DQH total 0.031 Bucketfill (Ramp) [1.43, 1.43] Bypass Korrekturwinkel 3.0 mr DQH spill 0.0032 HF sequentiell returned 0.0 mr	MU3I Korrekturwinkel -0.2 mrad tum Korrekturwinkel -1.4 mrad ame Extraktion

 $R_{acc} = 34m$ Energy = 11.048 MeV/u $\Rightarrow \gamma = 1.01177, \beta = 0.15$ Silver: Mass 107, Charge +45 Number of particles = $10^9 \Rightarrow I = 1.5$ mA Perveance:

 $K = 1.12 \times 10^{-8} \quad \mbox{(no units, it is a pure number)}$

Average beta functions

$$\overline{\beta}_x = \frac{R_{acc}}{Q_x} \rightarrow 8 \,\mathrm{m}$$

$$\overline{\beta}_y = \frac{R_{acc}}{Q_y} \rightarrow 10.4 \text{ m}$$

Example

N particles = 10^9

$$\epsilon_x \quad \epsilon_y \quad \Delta Q_{sc,x} \quad \Delta Q_{sc,y} \\ 5 \quad 5 \quad -0.017 \quad -0.02 \\ 30 \quad 15 \quad -0.0035 \quad -0.0057$$

N particles = 10¹¹

Discussion

Effective tunes of particle in the beam core

$$Q_x = Q_{x0} + \Delta Q_{sc,x}$$

Machine

Tune

Depressed Tune Space charge tuneshift

If
$$Q_{x0} = 4.295$$

but $\Delta Q_{sc,x} = -0.295$

Effective tune in the center of beam \rightarrow Q_x = 4 !!!!

The space charge tune-spread

Space charge tunespread is a measure of the high intensity

Rings
$$\Delta Q_{sc,x} = -0.5$$

 $\frac{Q_x}{Q_{x0}} = 0.9 \div 0.95$
Linacs $\frac{\psi_x}{\psi_{x0}} \sim 0.6 \div 0.7$
Phase advances rather than tunes

 \cap

Mismatching issues

Modified Optical functions

Suppose a beam with

 ϵ_x , ϵ_y

is matched for the **naked** optics

The beam is **mismatched** with respect to the modified optics !!!!

The matching issue

Matched beam and high intensity

Coasting beam

Mismatched beam and high intensity

Coasting beam

Resonances

Issues

- 1) Space charge + resonances in coasting beams
- 2) Space charge + resonances in bunched beams
- 3) Collective beam response to direct space charge forces ?

G. Franchetti

Resonances and high intensity

Coasting beam

Resonances and high intensity

Coasting beam

Effect is fast and depends on $\mathsf{DQ}_{\mathsf{sc}}$ and the "strength" of the resonance

Intensity effect during bunching

Beam loss mechanism

Resonances and high intensity

Bunched Beams

High intensity bunched beams and resonances @SIS18

Acceleration

During acceleration

Therefore the current increases

G. Franchetti

But, the space charge tuneshift become smaller !!

Summary

- Space charge tune-shift is the measure of the "high intensity";
- High intensity change machine+beam optics;
- A mismatched beam will create emittance increase;
- Overlapping of space charge tunespread will create emittance increase;
- For a bunched beam the overlapping of tunespread with a resonance;
 will create a diffusional regime → beam loss;
- In a bunch compression the tunespread increases and may lead to resonance overlapping;
- During acceleration space charge tunespread dumps;

Not addressed:

- High intensity on the longitudinal dynamics;
- High intensity, dp/p and bunch compression;
- Negative mass instability;
- Resistive wall instability;