

Hyperon Physics with PANDA at FAIR

Prof. Karin Schönning for the PANDA Collaboration Open Symposium on Hyperons @ FAIR October 25th, 2021

Outline

- Introduction
- Hyperons
- PANDA at FAIR
- Hyperon topics in PANDA
- Summary

Introduction

Many challenges in modern physics concern the **nucleon**:

- Abundance*
- Spin**
- Inner structure***

*L. Canetti et al., NJP 14 (2012) 095012 **C. A. Aidala *et al.*, RMP 85 (2013) 655-691. *** G. A. Miller, PRL 99 (2007) 112001.

Introduction

Many challenges in modern physics concern the **nucleon**:

Hyperons

What happens if we replace one of the light quarks in the proton with one - or many - heavier quark(s)?

Why hyperons?

Traceable spin:

Polarization experimentally accessible by the weak, parity violating decay:

Example: $\Lambda \rightarrow p\pi^-$ decay $I(\cos\theta_p) = N(1+\alpha P_A \cos\theta_p)$ P_A : polarisation α = asymmetry parameter

UPPSALA UNIVERSITET

Why hyperons?

Neutron stars:

- Described by the Equation of State (EoS)
- Large masses (~2 M_{sol}) and small radii (~10 km) observed.
- Extreme conditions near centre implies presence of hyperons*
 - should soften EoS and result in smaller masses
 - → Hyperon puzzle

Need to understand hyperon-hyperon and hyperon-nucleon interactions!

*Chatterjee & Vindana, EPJA 52, 29 (2016)

Fundamental Question

Topic

The PANDA experiment at FAIR

SIS 100/300 eV SIS18 **30 GeV Protons** p-Linac HESR Cu Target p/s @ 3 GeV 107 PANDA ccelerating RESR/CR Collecting **Facility for Antiproton** Accumulating and Ion Research Precooling

100m

The PANDA experiment at FAIR

The High Energy Storage Ring (HESR)

- Anti-protons within
 - $1.5 < p_{beam} < 15 \text{ GeV/c}$
- Internal targets
 - Cluster jet and pellet $(\bar{p}p)$
 - Foils $(\bar{p}A)$
- Luminosity:
 - Design $\sim 2^{*}10^{32}$ cm⁻²s⁻¹
 - Phase One $\sim 10^{31}$ cm⁻²s⁻¹

The PANDA experiment at FAIR

- Precise tracking
- PID
- Calorimetry

- Modular design
- Time-based data acquisition with software trigger 11

Advantages of PANDA

- Measured cross sections of ground-state hyperons in $\bar{p}p \rightarrow \bar{Y}Y$ 1-100 µb*.
- Excited hyperon cross sections should to be similar to those of ground-states**.

→ Large expected production rates!

* E. Klempt *et al.*, Phys. Rept. 368 (2002) 119-316 **V. Flaminio *et al.*, CERN-HERA 84-01

Advantages of PANDA

Antihyperon – hyperon pair production:

- Two-body processes
 → well-defined kinematics
- Symmetric particle-antiparticle final state

 \rightarrow entangled system \rightarrow correlated decays

Advantages of PANDA

Near 4π detectors \rightarrow exclusive measurements:

- Larger reconstruction efficiency
- Smaller reconstruction bias
- Prerequisite for model-independent partial wave analysis.

Hyperon production

Strong production dynamics

- Relevant degrees of freedom?
- Strange *versus* charm sector?
- Role of spin?

Hyperon production

- Mainly single-strange data.
- Scarce data bank above 4 GeV.
- No data on Ω nor Λ_c .

T. Johansson, AIP Conf. Proc. of LEAP 2003, p. 95.

Hyperon production prospects with PANDA

New simulation studies of single- and double-strange hyperons:

- Exclusive measurements of
 - $\bar{p}p \to \overline{\Lambda}\Lambda, \Lambda \to p\pi^-, \overline{\Lambda} \to \bar{p}\pi^+.$
 - $\ \bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+.$
 - $\ \bar{p}p \to \bar{\Xi}^+\Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+.$
- Ideal pattern recognition and PID
- Background using Dual Parton Model

PANDA, EPJA 57, 184 (2021) PANDA, EPJA 57, 154 (2021)

p_{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	3.8·10 ⁶
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4 S ⁻¹	>11*	207 000
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	20	6.1	5.0 S ⁻¹	21	432 000
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2	0.3-1	274	26000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9	0.1-1	65	8600
						* 90% C.L.

Hyperon production prospects with PANDA

New simulation studies of single- and double-strange hyperons:

- Exclusive measurements of
 - $\bar{p}p \to \overline{\Lambda}\Lambda, \Lambda \to p\pi^{-}, \overline{\Lambda} \to \bar{p}\pi^{+}.$
 - $\bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+.$
 - $\ \bar{p}p \to \bar{\Xi}^+\Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+.$
- Ideal pattern recognition and PID
- Background using Dual Parton Model

PANDA, EPJA 57, 184 (2021) PANDA, EPJA 57, 154 (2021)

p_{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate	S/B	Events		
PANDA will be a								
strangeness factory!								
4.0	$pp \rightarrow c c$	~1	0.2	0.3	2/4	20000		
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9	0.1 ⁻¹	65	8600		
						* 90% C.L.		

Hyperon Spectroscopy

How do quarks form baryons?

- Forces?
- Degrees of freedom?

Symmetric quark model

Molecule / hadronic d.o.f.

Quark - diquark

Hyperon spectroscopy

How do the puzzles of the light- and single strange baryon spectrum carry over to the multi-strange sector?

- Light baryon spectrum*:
 - "Missing" states
 - Parity pattern:++- (exp.) +-+ (QM)
- Single strange spectrum:
 - "Missing" states
 - The unbearable lightness of $\Lambda(1405)$

*EPJA 48 (2012) 127, EPJA 10 (2001) 395

Hyperon spectroscopy

- Impressive progress world-wide in
 - Single-strange spectroscopy (JLAB, CBELSA/TAPS, BGO-OD)
 - Charm and bottom baryons (Belle-II, LHCb)
- Very scarce data bank on multi-strange hyperons:

Gap to be filled by PANDA?

Feasibility study of $\bar{p}p \rightarrow \bar{\Lambda}K^+\Xi^- + c.c.$

р

E-(1820)

► π⁺,

 $\overline{\mathsf{N}}_0$

р

 π^+

- Include intermediate $\Xi^*(1690) \rightarrow \Lambda K$ and $\Xi^*(1820) \rightarrow \Lambda K$
- Simplified PANDA MC framework
- $p_{beam} = 4.6 \text{ GeV/c}$
- Assume $\sigma = 1 \ \mu b$ and $10^{31} \ cm^{-2}s^{-1}$ luminosity \overline{p}

PANDA, EPJA 57, 184 (2021) PANDA, EPJA 57, 149 (2021)

p _{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
4.6	$\bar{p}p \rightarrow \bar{\Lambda}K^+\Xi^- + c.c$	~1	5.4	0.2 ^{-s}	>19	~18000

Hyperon structure

Hyperon structure

Σ

- Transition form factors accessible from Dalitz decays
- Possible in case of *e.g.* Σ^{o} , $\Sigma^{*}(1385)$ and $\Lambda(1520)$
- **Challenge:** Small predicted BR's (10⁻³ 10⁻⁶)
- **Good news:** Large hyperon production cross sections.

π

Hyperon Structure

Hyperon decays

 θ_{p}

 \vec{P}_y

Promising hunting ground for CP violation

- necessary for dynamic enrichment of matter.
- Recall: $I(\cos\theta_p) = N(1 + \alpha P_A \cos\theta_p)$

UPPSALA UNIVERSITET

Hyperon decays

Recent progress by BESIII:

- Nature Phys. 15, p. 631-634 (2019): ~400 000 ΛΛ events
- Phys. Rev. Lett. 125, 052004 (2020): ~90 000 $\Sigma^+ \overline{\Sigma}^-$ events
- arXiv[hep-ex]:2105.11155: ~ 70 000 $\Xi^-\overline{\Xi}^+$ events

All consistent with CP symmetry,

but testing SM and BSM predictions requires 10-100 times better precision!

PANDA, EPJA 57, 184 (2021) PANDA, EPJA 57, 154 (2021)

p_{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	3.8·10 ⁶
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2	0.3-1	274	26000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9	0.1-1	65	8600

Hyperons in Nuclei

Hyperon-nucleus potential: Component of EoS of neutron stars.

- Antihyperons in nuclei:
 - $\overline{p}A$ → $\overline{\Xi}X$ possible during Phase One with regular setup.
- Hyperatoms:
 - Atomic cascade of the \(\mathcal{E}: \) \(\mathcal{E}N\)-interactions at lower nuclear densities
 - Dedicated hyperatom/hypernuclear setup with HPGe-detector array.
- Hypernuclei:
 - PANDA unique for heavy multistrange hypernuclei.

PANDA, EPJA 57, 184 (2021) PANDA, NPA 954, p. 323-340 (2016)

Hyperon physics with PANDA

- Phase 1:
 - Hyperon production and spin observables
 - Single- and double strange hyperon spectroscopy
 - Antihyperons in nuclei
- Phase 2:
 - Triple-strange hyperon spectroscopy
 - Hyperon structure
 - CP tests in hyperon decays
 - Hyperatom physics
- Phase 3:
 - High-precision CP violation tests
 - Hypernuclear physics

Summary

- Hyperons constitute a probe for
 - The strong interaction
 - Matter-antimatter asymmetry
 - Neutron stars
- PANDA will be a strangeness factory already during Phase One

→ Rich hyperon physics programme!

Thank you for listening!

