Hyperons @ CBM @ FAIR

Ilya Selyuzhenkov (GSI / MEPhI)

for the CBM Collaboration

Mini-symposium "Hyperons@FAIR", 25 October, 2021

Facility for Antiproton and Ion Research

Facility for Antiproton and Ion Research

CBM building at FAIR

HADES: p+p, p+A, A+A limited to low multiplicity A+A, optimized for dileptons **CBM**: p+p, p+A, A+A designed for high multiplicity, general purpose detector

Complementary operation of HADES and CBM at FAIR

CBM construction status

2019

Shell construction is progressing well

- Beam dump installed in April-May 2021
- Roofing ongoing
- CBM building ready for detector installation in 2022

drone video (September 30, 2021): https://youtu.be/Y82ZeLH1vZs

CBM physics and observables

CBM Collaboration, Eur.Phys.J. A53 (2017) no.3, 60

https://inspirehep.net/record/1474181

Rich structure of the QCD matter phase diagram

Fu, Pawlowski, Rennecke, PRD 101 (2020) 5, 054032

NUPECC Long Range Plan 2017

 $(T, \mu_B)_{CEP} = (107, 635) \text{ MeV: } \sqrt{s_{NN}} = 3.7 \text{ GeV}$

Rich structure of the QCD matter phase diagram

Fu, Pawlowski, Rennecke, PRD 101 (2020) 5, 054032

 $(T, \mu_B)_{CEP} = (107, 635) \text{ MeV: } \sqrt{s_{NN}} = 3.7 \text{ GeV}$

Dense Baryonic Matter

Neutron stars

Neutron star merger

GW170817

Heavy ion collisions

SIS100 energies

Temperature	T < 10 MeV	T ~ 10-100 MeV	T < 120 MeV
Nuclear density	$\rho < 10 \rho_0$	$\rho < 2 - 6 \rho_0$	$\rho < 5-15 \ \rho_0$
Lifetime / Reaction time	$t \sim infinity$	$t \sim 10 \text{ ms}$	$t\sim 10^{-23}s$

CBM physics and observables: QCD matter Equation of State (EoS) at large baryon densities

QCD matter EoS at large baryon densities; coexistence (quarkyonic) & partonic phases:

- Hadron yields, collective flow, correlations, fluctuations
- (Multi-)strange hyperons (K, Λ , Σ , Ξ , Ω)
- production at (sub)threshold energies

CBM physics and observables: Strange nuclear matter and baryon-baryon interactions

- Production of spatially extended objects (hypernuclei) in high baryon density environment
- Measurements of mass, binding energy, lifetime, branching ratios, etc.
- Sensitive to many-body hyperon interaction
 - \circ (Double-) Λ hypernuclei production

Collision energy range $\sqrt{s}_{_{NN}}$ for CBM can be tuned by changing the size of colliding nuclei

CBM physics and observables: Strange nuclear matter and baryon-baryon interactions

- Production of spatially extended objects (hypernuclei) in high baryon density environment
- Measurements of mass, binding energy, lifetime, branching ratios, etc.
- Sensitive to many-body hyperon interaction
 - \circ (Double-) Λ hypernuclei production
 - baryon-baryon correlations

(Λ -N, Λ - Λ , p- Ξ -, etc)

• Exotics, meta-stable strange states

Collision energy range $\sqrt{s_{_{NN}}}$ for CBM can be tuned by changing the size of colliding nuclei

Heavy-ion experiments worldwide

CBM will operate at high reaction rates: 10⁵ - 10⁷ Au+Au reactions/sec

Main experimental requirements and challenges

- High statistics needs high event rates: 10⁵ 10⁷ Au+Au reactions/sec
- Particle identification: hadrons and leptons, displaced ($\sigma \approx 50 \ \mu m$) vertex reconstruction for charm measurements
- Fast, radiation hard detectors & front-end electronics
- Free-streaming readout & 4 dimensional (space+time) event reconstruction
- High speed data acquisition & performance computing farm for online event selection

CBM experiment

CBM subsystems: tracking, particle identification, event characterization

Dipole Magnet bends charged particles trajectories

STS (Silicon Tracking System) charged particle tracking

MVD (Micro-Vertex Detector) secondary vertex reconstruction

RICH (Ring Imaging Cherenkov) electron identification or MUCH (MUon CHambers) muon tracking & identification

TRD (Transition Radiation Detector) electron identification

TOF (Time of Flight detector) hadron identification

PSD (Projectile Spectator Detector) collision centrality & reaction plane

Identification of light hadrons and nuclei

CBM simulation, central Au+Au @ 10A GeV/c

Clear separation between charged protons, pions and kaons

Clear separation of light nuclei

CBM simulation, Au+Au collisions @ 12A GeV/c

 p_{π}

Example of Λ reconstruction via $\Lambda \rightarrow p\pi^{-}$

Primary vertex

Example of Λ reconstruction via $\Lambda \rightarrow p\pi^{-}$ Machine learning (XGBoost) before selection 10⁶ XGB Predictions Background 50000 Signal 105 40000 10^{4} Sounts 30000 Counts **CBM Simulation** 10³ UrQMD CBM simulation Au+Au collisions @ 12A GeV/c Au+Au @ 12A GeV/c 10² 10000 X²_{prim1} χ^2_{geo} PV DCA $\chi^2_{prim^2}$ 101 0.0 0.1 0.2 0.3 07 0.8 0.9 1.0 1.10 1.12 1.14 XGB probability $m_{p\pi}$, GeV/ c^2 π Secondary Selection criteria are optimized multi-dimensionally vertex χ²topo α and non-linearly using Machine Learning algorithms α_____ \vec{p}_{Λ} L

Example of Λ reconstruction via $\Lambda \to \ p\pi^{\text{-}}$

(Multi)-strange hyperons: yield projections

C. Blume, C. Markert, PPNP 66 (2011) HADES Collaboration, PLB 778 (2018), PRL 103 (2009) 132301 RVUU: F. Li et al., PRC 85 (2012) 064902 UrQMD: J. Steinheimer et al., JPG43 (2016) 015104 ART: C.M. Ko et al., PLB595 (2004) 158-164 A. Andronic et al., NPA 772 (2006) F. Becattini et al., PRC69 (2004) 024905 E. Seifert et al., PRC97 (2018)

(Multi)-strange hyperons: yield projections

 $\Xi^{-} \rightarrow \Lambda + \pi^{-}$ SPS SIS18 AGS 10 (INITIPIICITY) 10-1 Machine learning (XGBoost) performance Ξ XGBoost Selected E - No selection 10 KEPE selected ET $\Omega^{\dagger} + \overline{\Omega}^{\dagger}$ —XGB selected 1 log (counts) -8000 10^{-2} ¥2 6000 — SHM AA 10 10^{-3} ····· SHM FB ---- THERMUS 1.00 • llen 0.75 10^{-4} ART — RVUU YY↔N Ξ — UrQMD 2000 1/ 0.50 80X - UrQMD heavy N*→ΞKK 0.25 10⁻⁵ 1.30 1.31 1.32 1.33 1.34 1.35 1.36 2 3 4 5 6 7 8 10 20 30 40 $m_{\Lambda\pi}$ -, GeV/ c^2 $m_{\Lambda\pi}^{}$, GeV/ c^2 Collision Energy $\sqrt{s_{NN}}$ (GeV)

C. Blume, C. Markert, PPNP 66 (2011) HADES Collaboration, PLB 778 (2018), PRL 103 (2009) 132301 RVUU: F. Li et al., PRC 85 (2012) 064902 UrQMD: J. Steinheimer et al., JPG43 (2016) 015104 ART: C.M. Ko et al., PLB595 (2004) 158-164 A. Andronic et al., NPA 772 (2006) F. Becattini et al., PRC69 (2004) 024905 E. Seifert et al., PRC97 (2018)

(Multi)-strange hyperons: yield projections

 $\Xi^{-} \rightarrow \Lambda + \pi^{-}$ SPS SIS18 AGS 10 (INITIPIICITY) 10-1 Machine learning (XGBoost) performance Ξ XGBoost Selected E No selection 10 KEPE selected ET $\Omega^{\dagger} + \overline{\Omega}^{\dagger}$ —XGB selected 1 log (counts) 10^{-2} ¥2 6000 — SHM AA 10 10^{-3} ····· SHM FB ---- THERMUS 1.00 • llen 0.75 10^{-4} ART — RVUU YY↔N Ξ — UrQMD 2000 1/ 0.50 80X - UrQMD heavy N*→ΞKK 0.25 10⁻⁵ 1.30 1.31 1.32 1.33 1.34 1.35 1.36 2 3 4 5 6 7 8 10 20 30 40 $m_{\Lambda\pi}$ -, GeV/ c^2 $m_{\Lambda\pi}^{}$, GeV/ c^2 Collision Energy $\sqrt{s_{NN}}$ (GeV)

C. Blume, C. Markert, PPNP 66 (2011) HADES Collaboration, PLB 778 (2018), PRL 103 (2009) 132301 RVUU: F. Li et al., PRC 85 (2012) 064902 UrQMD: J. Steinheimer et al., JPG43 (2016) 015104 ART: C.M. Ko et al., PLB595 (2004) 158-164 A. Andronic et al., NPA 772 (2006) F. Becattini et al., PRC69 (2004) 024905 E. Seifert et al., PRC97 (2018)

experiment	√s _{NN} , GeV	Run time (weeks)	R _{int} , kHz	[I]	E]	$\overline{\Omega}^+$
HADES (Ag)	2.6	4	10	2.5x10 ³		
MPD S1	11	10	5	1.5x10 ⁶	8x10 ⁴	1.5x10 ⁴
CBM	3.8	1	1000	4x10 ⁹	5x10 ⁶	3.3x10⁵

Hypernuclei: reconstruction & yield projections

Recent developments in coupling dynamical & statistical mechanisms of cluster production Botvina, Buyukcizmeci, Bleicher, <u>PRC103 (2021) 6, 064602</u>

Blue & red lines: precision of measurable yields assuming various scenario

A. Andronic et.al. PLB 697 (2011) 203-207 J. Steinheimer et.al., PLB 714 (2012) 85-91

Hypernuclei: reconstruction & yield projections

A. Andronic et.al. PLB 697 (2011) 203-207 J. Steinheimer et.al., PLB 714 (2012) 85-91 Double- Λ hypernuclei reconstruction in CBM

Hypernuclei: reconstruction & yield projections

Double- Λ hypernuclei reconstruction in CBM

СВМ	√s _{nn} , GeV	Run time, weeks	eff, %	R _{int} , MHz	Duty F %	Yield
³∧H	4.7	1	19	10	50	5.5x10 ⁹
⁴ _∧ He	4.7	1	15	10	50	2.7x10 ⁸
⁶ _^ He	4.7	10	1	10	50	146

Rate estimates for 10Mhz are without MVD

Using femtoscopy to study hyperon-hyperon interaction

Precision measurements of baryon-baryon interaction:

- study strong interactions between (multi)-strange baryons
 In baryon reach (A+A) environment
- Possibility to study many-body interaction
- Compare with predictions from lattice calculations

Using femtoscopy to study hyperon-hyperon interaction

Precision measurements of baryon-baryon interaction:

- study strong interactions between (multi)-strange baryons
 In baryon reach (A+A) environment
- Possibility to study many-body interaction
- Compare with predictions from lattice calculations

Probing QCD Equation of State: collective flow of hyperons

$$v_n = \langle \cos[n(arphi - \Psi_{RP})]
angle$$

Probing QCD Equation of State: collective flow of hyperons

 $v_n = \langle \cos[n(arphi - \Psi_{RP})]
angle$

31

FAIR Phase-0: CBM performance at high-rates with mCBM

mCBM subsystems in 2021

mCBM setup in 2021

The mCBM experiment at GSI SIS18 June 16, 2021

Month in 2021	beam ion	Energy, AGeV	target	rate per spill	duration, sec
March	²⁰⁸ Pb (67+)	1.06	Ni	2 x 10 ⁹	10
May	¹²⁴ Xe (46+)	1.3	Ni	3 x 10 ⁹	10
June	¹⁶ O (8+)	2	Ni	10 ¹¹	10

FAIR Phase-0: CBM performance at high-rates with mCBM

mCBM subsystems in 2021

mCBM setup in 2021

 $\Lambda \rightarrow p\pi^{-}$

Month in 2021	beam ion	Energy, AGeV	target	rate per spill	duration, sec
March	²⁰⁸ Pb (67+)	1.06	Ni	2 x 10 ⁹	10
Мау	¹²⁴ Xe (46+)	1.3	Ni	3 x 10 ⁹	10
June	¹⁶ O (8+)	2	Ni	10 ¹¹	10

 Λ hyperon yield is a benchmark CBM measurements: compare with published data (FOPI, HADES) Measure excitation function and system size dependence of sub-threshold Λ production

FAIR Phase-0: eTOF @ STAR

TOF @ STAR

E_{beam}= 3.85 GeV, STAR Fixed target mode

eTOF @ STAR is installed, commissioned and used during STAR-FXT data tacking

FAIR Phase-0: eTOF @ STAR

TOF @ STAR

E_{beam}= 3.85 GeV, STAR Fixed target mode

Validating CBM online tools at STAR: KFParticleFinder

eTOF @ STAR is installed, commissioned and used during STAR-FXT data tacking

FAIR Phase-0: Single- Λ hypernuclei @ STAR fixed target

- Yields vs $\sqrt{s_{NN}}$, differentially in p_{T} (m_{T}), rapidity, etc.: probing different production mechanisms
- Mass, binding energy, lifetime, branching ratios, etc.: lifetime of the ${}^4_{\Lambda}$ He differs from that of free Λ
- STAR can access 3-body decays, only single- Λ hypernuclei p to ${}^{5}_{\Lambda}$ He

Summary

CBM physics program at SIS100 is unique:

• Precision study of the QCD phase diagram in the region of extreme high net-baryon densities

Unique measurements of rare diagnostic probes with CBM:

- High-precision multi-differential measurements of hadron yield and correlations including (multi-)strange hyperons for different beam energies and collision systems
- Studies of light (multi-lambda)hypernuclei
- Extensive physics performance studies for many physics observables

CBM FAIR-Phase 0 program (HADES, STAR, BM@N, NA61/SHINE, mCBM)

- Activities are targeted towards usage and understanding of major components and their integration
- Produce physics results with CBM devices:
 - hypernuclei production at STAR FXT
 - measurement of subthreshold ∧ excitation function at mCBM

The CBM Collaboration: 55 institutions, 413 members

