Oct. 27th. 2021

Equation of State from Color Molecular dynamics

Nobutoshi Yasutake (Chiba Inst. Tech./JAEA)

Color-molecular dynamics

Y. Mukobara, (Tokyo Inst. Tech.), T. Maruyama (JAEA), T. Hatsuda (RIKEN)

VR/3D Graphic movies H.Tanihisa, J. Hakozaki(CIT)

Since launch , June 3rd. 2017

NEUTRON STAR INTERIOR COMPOSITION EXPLORER

(C) KEITH GENDREAW@NASA

Dec. 2019

Best fitted wave form with 2 hot spots

Best fitted wave form with 3 hot spots

2 or 3 hot spots in the southern hemisphere Not dipole \rightarrow We need 3D simulations to understand.

(c)NASA

MR relation

before NICER

with "a" NICER constraint

MASS-RADIUS RELATION

Targets & Exposures by Working Group

https://heasarc.gsfc.nasa.gov/docs/nicer/proposals/science_team_investigations/

Target Name	Contact	Exposure (ksec)			
		Plan	To date	Legacy	Purpose
PSR J0030+0451	S. Bogdanov	1,600	1,936	Y	Radius, mass constraints from energy- dependent lightcurve modeling
PSR J0437-4715	S. Bogdanov	1,000	951	Y	Same
PSR J0740+6220	Z. Arzoumanian	1,600	75	Y	Same
PSR J1231-1411	P. Ray	1,600	1356	Y	Same
PSR J2124-3358	S. Bogdanov	1,600	1051	Y	Same
PSR J1614-2230	M. Wolff	500	400	Y	Radius lower limit from lightcurve modeling

Constraints from PREX II around saturation density

- But it depends on the analysis methods? (Reinhard et al. arXiv:2105.15050)
- CREX results suggest ordinary L values, not large as PREX-II (preliminary result).

PREX II & NICER

Quiz: What is the component?

Other properties?

Progress of the NICA project (2009)

- We will obtain "MR relation".
- But what kind of material? \downarrow
- Pressure(energy) vs density. \triangle Other physical properties.
 - e.g. thermal conductivity, heat capacity...

Lattice QCD (sign problem)

+ Color Molecular dynamics

Other physical property

We can obtain physical quantities by Green-Kubo formula.

$$\alpha = \int_0^\infty \left\langle \dot{U}(t)\dot{U}(0)\right\rangle dt.$$

e.g. thermal conductivity $\boldsymbol{\lambda}$

$$egin{array}{rcl} lpha &= VT^2\lambda, \ U_x(t) &= \sum\limits_{i=1}^N x_i(t)E_i(t), \ \dot{U}_x(t) &= \displaystyle rac{d}{dt}\sum\limits_{i=1}^N x_i(t)E_i(t). \end{array}$$

Statistical temperature from CMD is consistent with theoretical distribution.

COOLING OF NEUTRON STARS

FROM QCD TO NS MATTER

Neutron Star matter

Lattice QCD

size	\sim 10 fm
number	6 (, 9)

step = 0time = 0.0 fm/c

There are the limits by the sign problem.

Using the results (interactions) from LQCD, we conduct the Color molecular dynamics(CMD) simulations. MD simulations can not be the 1st principle. They work well to study the medicines and/or DNA, etc..

Resent works with Molecular Dynamics SARS-CoV-2 Main Proteases (c) Taiji et al. at RIKEN

COLOR QMD See also Maruyama, Hatsuda (2000) PRD

number of variables

$$[x, y, z, Px, Py, Pz, \alpha, \beta, \theta, \varphi]_i$$

10 variables on each particle

wave functions $\Psi = \prod_{i=1}^{3A} \phi_i(\mathbf{r}) \chi_i \qquad \chi_i = f_i s_i c_i$ $f_i \dots \text{flavors (fixed)}$ $s_i \dots \text{spins (fixed now)} \qquad \downarrow \qquad \downarrow$ $C_i \equiv \begin{pmatrix} \cos \alpha_i e^{-i\beta_i} \cos \theta_i \\ \sin \alpha_i e^{+i\beta_i} \cos \theta_i \\ \sin \theta_i e^{i\varphi_i} \end{pmatrix} \stackrel{\textbf{R}}{\textcircled{G}}$ $\theta_i(\mathbf{r}) \equiv (\pi L^2)^{-\frac{3}{4}} \exp[-(\mathbf{r} - \mathbf{R}_i)^2/2L^2 - i\mathbf{P}_i\mathbf{r}]$

time evolution

$$\frac{\partial \mathcal{L}}{\partial q} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}} \qquad \mathcal{L} = \left\langle \Psi \left| i\hbar \frac{d}{dt} - \hat{H} \right| \Psi \right\rangle$$

$$\begin{split} \dot{\mathbf{R}}_{i} &= \frac{1}{3} \sum_{j \in \{i\}} \left[\frac{\partial H}{\partial \mathbf{P}_{j}} + \mu_{P} \frac{\partial H}{\partial \mathbf{R}_{j}} \right] \\ \dot{\mathbf{P}}_{i} &= \frac{1}{3} \sum_{j \in \{i\}} \left[-\frac{\partial H}{\partial \mathbf{R}_{j}} + \mu_{P} \frac{\partial H}{\partial \mathbf{P}_{j}} \right] \end{split}$$

 $\begin{cases} |\mathbf{R}_{i} - \mathbf{R}_{j}| < d_{cluster} \quad (i, j = 1, 2, 3) \\ \sum_{a=1}^{8} \left[\sum_{i=1}^{3} \langle \chi_{i} | \lambda^{a} | \chi_{i} \rangle \right]^{2} < \varepsilon \end{cases}$ $\lambda^{a} \text{ being the Gell-Mann matrices}$

Visualization of CMD

Thanks to the students.

removed

Hakozaki

Youtube Link(VR)

https://www.youtube.com/watch?v=nolC0UmR3Is&feature=youtu.be

oculus(VR)

INTERACTIONS IN CMD

$$\begin{split} \hat{H} &= \sum_{i} \sqrt{m^{2} + \hat{\mathbf{p}}_{i}^{2}} + \frac{1}{2} \sum_{i,j \neq i} \hat{V}_{ij} \\ \hat{V}_{ij} &= -\sum_{a=1}^{8} t_{i}^{a} t_{j}^{a} V_{C}(\hat{r}_{ij}) + V_{M}(\hat{r}_{ij}) + V_{Pauli}(r) + V_{coul}(r) \\ V_{C}(r) &\equiv Kr - \alpha_{s} \frac{e^{-\mu r}}{r} + V_{spin}(r) \\ V_{spin}(r) &= \frac{\kappa'}{m_{i}m_{j}r_{0ij}^{2}} \frac{1}{r_{ij}} e^{-(r_{ij}/r_{0ij})^{2}} \mathbf{S}_{i} \mathbf{S}_{j} \\ V_{M}(r) &\equiv -\frac{g_{\sigma q}^{2}}{4\pi} \frac{e^{-\mu \sigma r}}{r} + \frac{g_{\omega q}^{2}}{4\pi} \frac{e^{-\mu \omega r}}{r} + \frac{\sigma_{i}^{3} \sigma_{j}^{3}}{4} \frac{g_{\rho q}^{2}}{4\pi} \frac{e^{-\mu \rho \hat{r}_{ij}}}{\hat{r}_{ij}} \\ V_{Pauli} &= \frac{C_{p}}{(q_{0}p_{0})^{3}} \exp\left[-\frac{(\mathbf{R}_{i} - \mathbf{R}_{j})^{2}}{2q_{0}^{2}} - \frac{(\mathbf{P}_{i} - \mathbf{P}_{j})^{2}}{2p_{0}^{2}}\right] \hat{\delta}_{\chi i \chi j} \\ t^{a} = \lambda^{a}/2 \text{ with } \lambda^{a} \text{ being the Gell-Mann matrices} \end{split}$$

*We only take into account the correlation between only 2 particles.

 \Rightarrow order of calculations $\sim O(N^2)$

Procedure

How to reduce numerical costs ?

Tree method from N-body simulations in astrophysics

Double folding model

Energy conservation

one of the accuracy checks

total energy

(c) Mukobara+

EOS from color molecular dynamics without spin cases

 \cdot non-linear σ meson coupling

$$\frac{1}{2-\varepsilon} \left(-\frac{g_{\sigma q}^2}{4\pi} \right) \left(\sum_{j \neq i, j \in l}^n \frac{e^{-\mu_\sigma \hat{r}_{ij}}}{\hat{r}_{ij}} \right)^{1-\varepsilon}$$

non-relativistic kinetic energy

$$\frac{\mathbf{P}_i^2}{2m_i}$$

color fixed calculations

• σ meson coupling

$$\frac{1}{2} \sum_{i,j\neq i} - \frac{g_{\sigma q}^2}{4\pi} \frac{e^{-\mu_\sigma r}}{r}$$

relativistic kinetic energy

$$\sum_{i} (\sqrt{m^2 + \mathbf{\hat{p}}_i^2} - m)$$

color evolutions

Free kinetic energy for fermions and Pauli interaction

Introduced to show the antisymmetric effects.

These parameters, Cp, q0, p0 are optimized to reproduce the kinetic energy for fermions

Many body cases phase transition as quantum percolation step =step =0 0.0 fm/c 0.0 fm/c time = time = 8fm OShi ρ=4.10ρ₀ (N=1008) $\rho = 1.17 \rho_0 (N = 288)$ low density $\langle --- \rho --- \rangle$ high density (3-body) Kojo-Powell-Song-Baym 2014

Energy component for cross over EOS

• Elong (confinement potential)

- \rightarrow Phase transition (order)
- Emeson (quark-meson couplings) + Ekin(kinetic term) → Hardness of EOS

<u>Many body system</u> <u>around phase transition</u>

11*n*₀

Deconfinement occurs gradually dependent on density.

First trial calculations for MR relations

What type of E/A(interaction) is favored?

Comparison with Dirac Bruckner Hartree Fock (Bonn-B potential)

DBHF: Parabolic shape, namely "soft" at low density and "hard" at high density. CMD: Almost linear shape, compared with DBHF.

Origins of the non-linear effects:

color magnetic interactions? relativistic interactions? many body interactions? Or the other interactions?

Color magnetic interaction for N quarks

Jaffe, PRD 15, 281 (1978), Oka & Yazaki, PTP 66, 556 15, 281 (1981)

$$-\sum_{i\neq j}^{N} \{\chi \vec{\sigma}\}_{i} \cdot \{\chi \vec{\sigma}\}_{j} = 8N - \frac{1}{2}C_{6}^{N} + \frac{4}{3}S_{N}(S_{N} + 1) + C_{3}^{N}$$

where we use quadratic Casimir operators

$$C_6^N = \sum_{r=1}^{35} \left(\sum_{i=1}^N \mu_i^r\right)^2, \quad C_2^N = 4S_N(S_N + 1) = \sum_{k=1}^3 \left(\sum_{i=1}^N \sigma_i^k\right)^2, \quad C_3^N = \sum_{a=1}^8 \left(\sum_{i=1}^N \lambda_i^a\right)^2.$$

e.g.

$$n \cdots N=3, C_6=33*2, S=1/2, C_3=0 \implies -8$$

 $\Delta \cdots N=3, C_6=21*2, S=3/2, C_3=0 \implies +8$

But what about N>>3 ?

In our molecular dynamics, we need 2-body effective interaction corresponding N-body systems.

OPTIMIZATION OF INTERACTIONS IN CMD

interactions with colors

 $r_{0ij} = (\alpha + \beta \mu_{ij})^{-1}$. $\mu_{ij} = m_i m_j / (m_i + m_j)$

Aaron et al. EPJA 56,93(2020)

Summary and Discussion

Summary

- We have studied EoS from CMD with dynamical color evolutions.
- We have found cross over EOS, which is consistent with Akimura et al. 2005.
- Note that we have also found 1st order phase transition for the other parameter sets.
- We need more realistic E/A. ← Color-magnetic int.? Relativistic? Others?

Discussion

- What should be effective two-body color magnetic interactions corresponding N-body system?
- How to take into account the vacuum effects (chiral condensations).