PROBING OF EXOTICS STRUCTURE WITH HADRON AND HEAVY ION COLLISIONS

Mikhail Barabanov¹⁾, Adam Kisiel ^{1,2)}

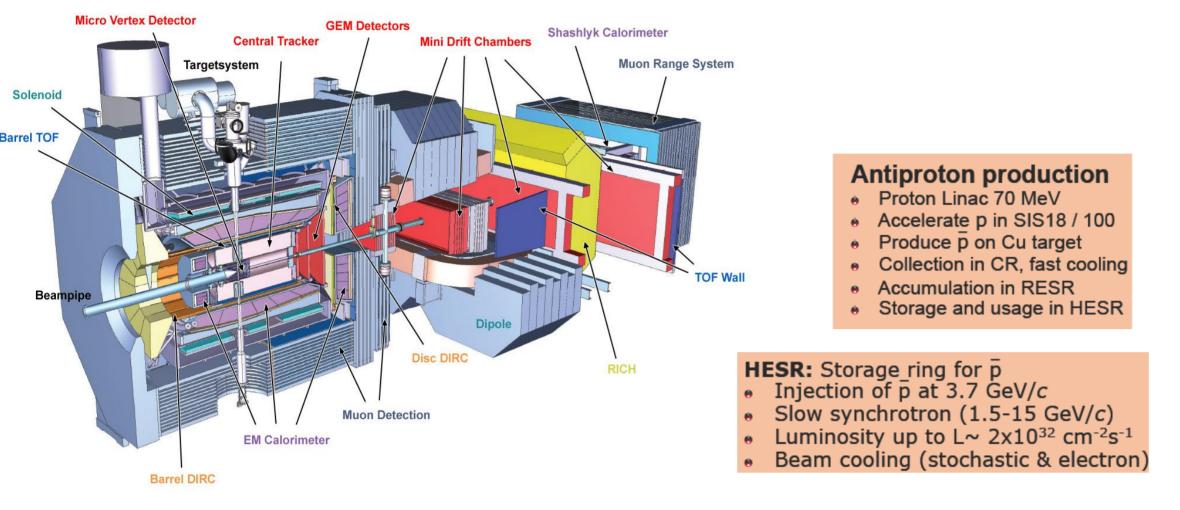
1) Joint Institute for Nuclear Research, 2) Warsaw University of Technology

MPD APPARATUS

Magnet: 0.5 T superconductor Tracking: TPC, ECT, IT Particle ID: TOF, ECal, TPC T₀, Triggering: FFD Centrality, Event plane: ZDC Stage 1: TPC, Barrel TOF& ECal, ZDC, FFD Stage 2: IT + EndCaps (tracker, TOF, ECal) **Detector features:** • Minimal dead time, event rate capability up to ~ 6 kHz.

- Hermeticity, homogeneous acceptance: 2π in azimuthal angle.
- Highly efficient 3-D track reconstruction ($|\eta|$ <2), high resolution vertexing.
- Powerful PID: π/K up to 1.5 GeV/c, K/p up to 3 GeV/c, ECal for γ , $e^{+/-}$.
- · Careful event characterization: impact parameter & event plane reconstruction.

SC Coil


Yoke

BBC

-NICA

COMPLEX NICA

COMPLEX FAIR

PANDA APPARATUS

CBM APPA relativistic ions, antiprotons nuclear **PANDA** antiproton beams **NUSTAR** radioactive

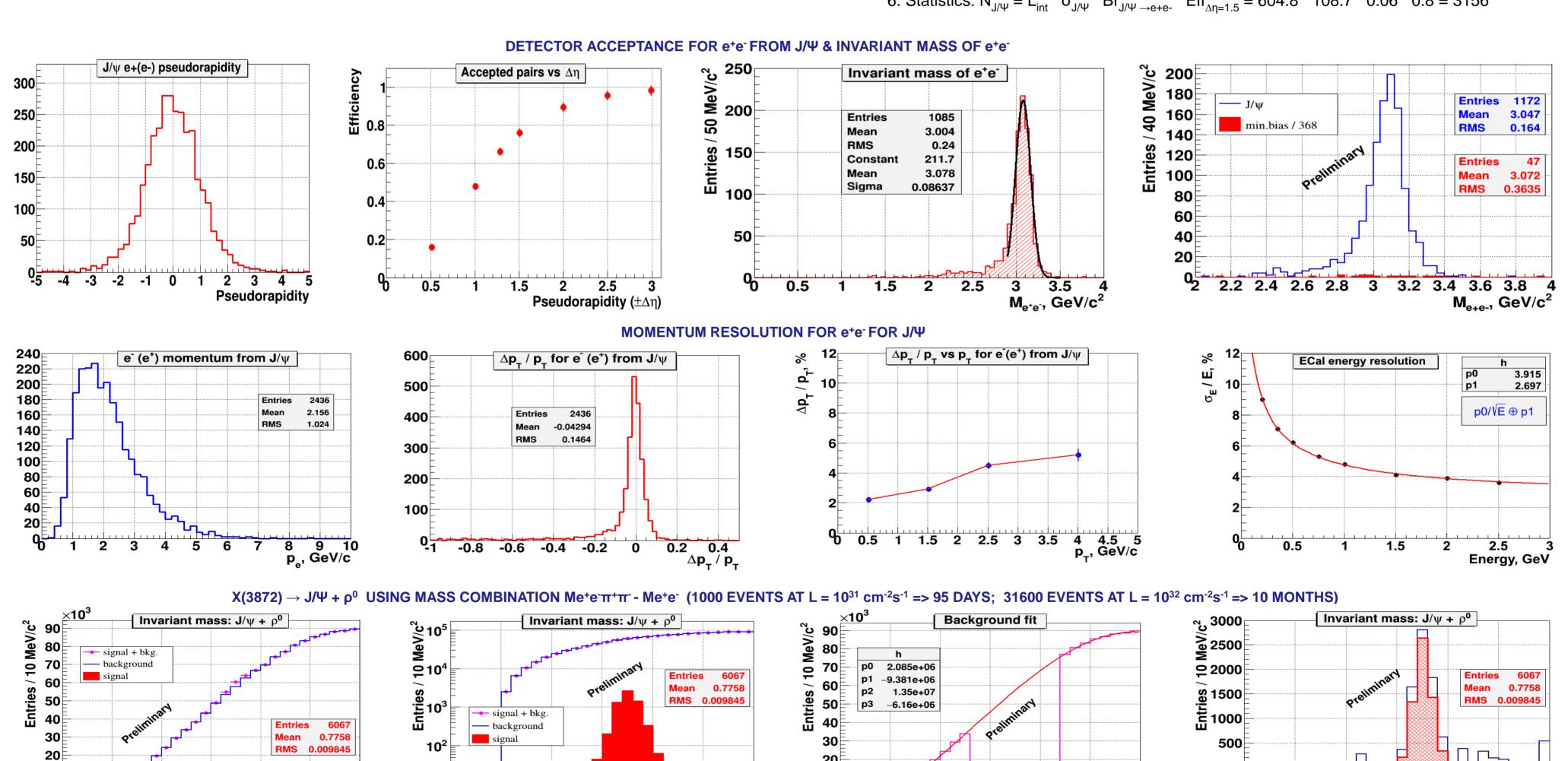
SOFTWARE

- 1. MpdRoot as a framework
- 2. Pythia8, UrQMD3.3 generators
- 3. MpdRoot Geant3 transport

10

0.65

0.7


4. MpdRoot TPC Kalman filter – based track and vertex reconstruction

RUNNING CONDITIONS

1. p+p at $\sqrt{s} = 25 \text{ GeV}$

Cryostat

- 2. Luminosity $L = 10^{29} \text{ cm}^{-2}\text{c}^{-1}$
- 3. Running time 10 weeks: integrated luminosity $L_{int} = 604.8 \text{ nb}^{-1}$
- 4. Decay channel $J/\Psi \rightarrow e^+e^-$ (branching ratio ~6%)
- 5. X-section $\sigma_{J/\Psi}$ from Pythia8 equals 108.7 nb
- 6. Statistics: $N_{J/\Psi} = L_{int} \cdot \sigma_{J/\Psi} \cdot Br_{J/\Psi \to e+e^-} \cdot Eff_{\Delta n=1.5} = 604.8 \cdot 108.7 \cdot 0.06 \cdot 0.8 = 3156$

most of the time looks like a DOD*0 molecule Specific model by Takizawa & Takeuchi, PTEP 9, 093D01 >7 fm ≈1 fm produced via finis component 'core' D^0 state $M_{X(3872)} - m_{D^+} - m_{D^{*-}} - \frac{q^2}{2\mu_0}$

 $M_{X(3872)} - m_{D^0} - m_{D^{*0}} - \frac{q^2}{2\mu_0}$

X(3872) REPRESENTS PROBABLY A MIXTURE OF DD*\bar AND CC\bar CORE

0.8

Invariant mass, GeV/c²

0.75

0.85

10

0.6

0.65

0.7

0.75

8.0

Invariant mass, GeV/c²

0.85

NEAR THRESHOLD PRODUCTION VIA pp & pA pp \rightarrow X(3872) \rightarrow $\pi^+\pi^-$ J/ ψ pAr \rightarrow X(3872) \rightarrow $\pi^+\pi^-$ J/ ψ Strong quenching for A~40 nuclei??

0.65

0.7

0.75

8.0

Invariant mass, GeV/c²

Use NICA, a new pp/pA/AA collider at JINR (Dubna)?

PROPOSAL

0.75

8.0

Invariant mass, GeV/c²

0.85

- "Probing of X(3872) meson structure with near threshold pp and pA collisions"
 - M. Yu. Barabanov 1), S.L. Olsen 2)

0.7

-500

0.6

0.65

0.85

- 1) Joint Institute for Nuclear Research, Dubna, Russia 141980
- ²⁾ University of Chinese Academy of Science, Beijing, China, 100039

SUMMARY

- These experiments could provide good opportunities for the reconstruction and identification of charged and neutral particles.
- ♦ They can obtain some valuable information on the charm production in pp\bar, pp & pA collisions.
- Measurements of charmonium-like states can be considered as one of the "pillars" of physics program.