Research on the energy loss increase of intense proton beams in plasma

Benzheng Chen¹

¹MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China

Bethe's theory^[1]

The energy loss of a single ion in matter, in cgs units, reads,

$$-\frac{dE}{dx} = \frac{4\pi e^4 Z_{eff}^2}{m_e v_p^2} \left[\sum_k n_{bek} \ln \left(\frac{2m_e v_p^2}{I_k} \right) + G \left(\frac{v_p}{v_{th}} \right) n_{fe} \ln \left(\frac{2m_e v_p^2}{\hbar \omega_p} \right) \right].$$

e: the elementary charge; n_{bek} : bound electron density; Z_{aff} : particle effective charge; n_{fe} : free electron density;

 $\vec{n_e}$: electron mass; $\vec{I_k}$: ionization energy of bound electron;

 $arphi_p$: particle velocity; $arphi_p$: plasma frequency;

 g_{th} : plasma thermal velocity; G: Chandrasekhar function.

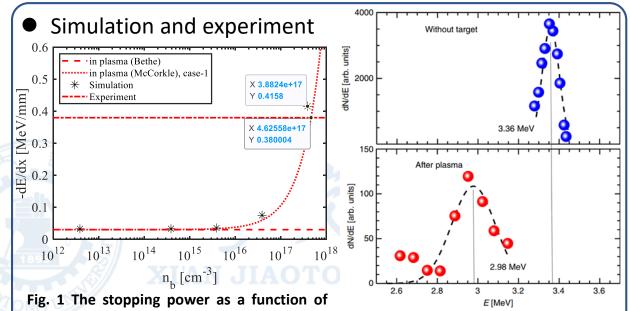
• McCorkle's theory [2]

Considering the beam-density effect, the energy loss of a

ion beam with a density of n_b is

$$S_b = S_0 \left[1 + \int_0^\infty g(r/a) 4\pi r^2 n_b dr \right]$$

= $S_0 \left(1 + 2\pi n_b a^3 / 3 \right)$
= $S_0 \left(1 + N_c \right)$,


where S_0 is the energy loss of a single ion, g(r/a) is an interference term

$$g(r/a) = \begin{cases} 1/2, r \le a \\ 0, r > a \end{cases}$$

and a equals v_n/ω_n .

[1] H. Bethe, Ann. Phys. (Leipzig) 5, 325-400 (1930)[3] J. Ren, Z. Deng, W. Qi, B. Chen, *et al.*, Nat. [2] R. A. McCorkle and G. J. Iafrate, Phys. Rev. Lett.Commun. 11, 5157 (2020).

39, 1263-1266 (1977).

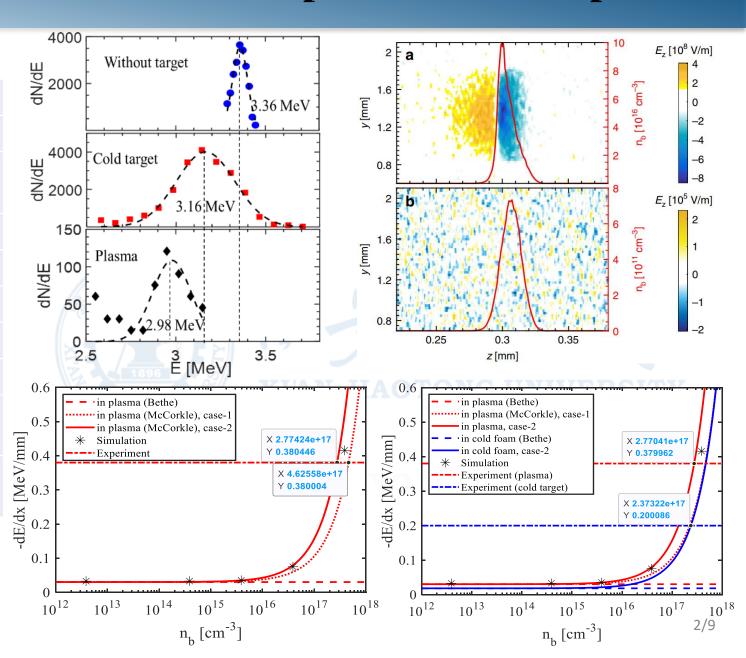
beam density.

Fig. 2 The energy spectra of the initial injected proton beam (without target) and that passing though the plasma target. [3]

Conclusion

- The stopping power is proportional to a well-defined number of beam particles that interact coherently.
- PIC simulation results agree with the beam-density effect theory.
- In experiment, the stopping enhancement of intense proton beam in plasma can reach one order of magnitude compared with individual ion stopping models.

Research on the energy loss increase of intense proton beams in plasma


Appendix

Injected proton beam	Beam length	1 ps
	Beam radius	0.5 mm
	Energy	3.36 MeV (FWHM of 0.06 MeV)
	Density	$4 \times 10^{12} - 10^{17} \text{ /cm}^3$
	Current	1.6×10 ³ -10 ⁸ A/cm ²
C ₉ H ₁₆ O ₈ plasma	Density	2 mg/cm ³
	Length	1 mm
	e ⁻ density	4×10 ²⁰ /cm ³
	Temperatur e	17 eV
	lonization state	C ^{3.8+} H ^{0.98+} O ^{4.5+}

Case-1: $a = v_p / \sqrt{4\pi n_e e^2 / m_e}$

Case-2: $a = v_p / \sqrt{4\pi n_{ve} e^2 / m_e}$

 $n_{v_{\theta}}$ ---- valence electron density

