Modern CMake

Dennis Klein

Software Development for Experiments Group
Central IT Department, GSI

C++ User Group Meeting
3rd November 2021, GSI Darmstadt

https://git.gsi.de/SDE/cxx-user-group
https://indico.gsi.de/event/13328/

Introduction
®00

Notes

Disclaimer
| do not necessarily endorse CMake. My CMake experience is purely coincidental. J

Dennis Klein Modern CMake C++ User Group Meeting 21-44

Introduction
®00

Notes

Disclaimer
| do not necessarily endorse CMake. My CMake experience is purely coincidental. J

@ However, it is worth talking and learning about CMake, because it is a popular

choice among C++ projects.
e We are planning a more basic intro to buildsystems/CMake in a separate talk in

the future.

C++ User Group Meeting 21-44 2 /26

Dennis Klein Modern CMake

Introduction
oeo

Outline

@ Introduction
© Properties
@ Scopes
@ Propagation
@ Generic Accessors
© Target Relationships
@ Expressing Dependencies
@ Exported Targets

o CMake package

@ Imported Targets
@ Generator Expressions
© Functions

@ Style

@ ROOT Dictionary Generation
@ Testing CMake

@ FairCMakeModules

Dennis Klein

Modern CMake C++ User Group Meeting 21-44

Introduction
ooe

Definitions

What is Modern CMake?

Modern CMake refers to a buildsystem written using CMake language idioms and
CMake library features available and preferred since version 3 (roughly).

Dennis Klein Modern CMake C++ User Group Meeting 21-44 4/ 26

Introduction
ooe

Definitions

What is Modern CMake?

Modern CMake refers to a buildsystem written using CMake language idioms and
CMake library features available and preferred since version 3 (roughly).

What is a buildsystem?

A buildsystem is a graph of high-level logical targets used to automate (incremental)
building, installing (packaging), and testing software from source.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 4/26

Introduction
ooe

Definitions

What is Modern CMake?

Modern CMake refers to a buildsystem written using CMake language idioms and
CMake library features available and preferred since version 3 (roughly).

What is a buildsystem?

A buildsystem is a graph of high-level logical targets used to automate (incremental)
building, installing (packaging), and testing software from source.

What is a target?

A target represents an executable, a library or a custom artifact (usually produced by a
user-defined command/script).

Dennis Klein Modern CMake C++ User Group Meeting 21-44 4/26

Properties
[I}

Properties

Properties

Dennis Klein Modern CMake C++ User Group Meeting 21-44 5/ 26

Properties
oce

Properties

Definition
CMake properties are key/value pairs defined on various CMake objects or scopes:
@ Global Scope,
Directories, (avoid using these in modern CMake)

Targets,

Source Files,

Cache Entries, and

°
°
@ Tests,
°
°
°

Installed Files.

https://cmake.org/cmake/help/latest/manual /cmake-properties.7.html

Dennis Klein Modern CMake C++ User Group Meeting 21-44 6 /26

Properties
[1}

Scopes - Examples (1)

Directory Scope

project
CMakeLists.txt
1ibA
L CMakeLists.txt
1ibB
L CMakeLists.txt

include_directories ([AFTER|BEFORE] [SYSTEM] diril [dir2 ...])

= Sets the INCLUDE_DIRECTORIES property on a directory, which is inherited by all
targets in this directory.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 7/ 26

Properties
oe

Scopes - Examples (2)

Target Scope

1 target_include_directories(<target> [SYSTEM] [BEFORE]
2 <INTERFACE |PUBLIC|PRIVATE> [itemsi...]
3 [<INTERFACE|PUBLIC|PRIVATE> [items2...] ...])

= Sets the *INCLUDE_DIRECTORIES properties on a target.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 8 /26

Properties
°

Propagation

Some CMake commands offer a compact syntax to modify multiple target properties
at once:

1 target_link_libraries(<target>
2 <PRIVATE|PUBLIC|INTERFACE> <1libi1> ...

3 [<PRIVATE|PUBLIC|INTERFACE> <1ib2> ...] ...)

populates INTERFACE_LINK_LIBRARIES | LINK_LIBRARIES
PRIVATE X
PUBLIC X X
INTERFACE X

C++ User Group Meeting 21-44 9 /26

Dennis Klein Modern CMake

Properties
.

Generic Accessors

Retrieving properties:

1 get_property(...)
2 get_directory_property(...)
3 get_target_property(...)

Setting properties (if supported):

1 set_property(...)
2 set_directory_properties(...)
3 set_target_properties(...)

Dennis Klein Modern CMake C++ User Group Meeting 21-44 10 / 26

Target Relationships
.

Target Relationships

Target Relationships

Dennis Klein Modern CMake C++ User Group Meeting 21-44 11 /26

Target Relationships
°

Expressing Dependencies

Idiom
Modern CMake reuses the command target_link libraries to declare

dependencies between targets.
We also use this command, even if we do not want to link with the dependencies, e.g.

for header-only libraries.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 12 / 26

Target Relationships
°

Expressing Dependencies

Idiom

Modern CMake reuses the command target_link libraries to declare
dependencies between targets.

We also use this command, even if we do not want to link with the dependencies, e.g.
for header-only libraries.

Example: Shared library B depends on header-only library A
project/libA/CMakeLists.txt
1 add_library(A INTERFACE)
2 target_include_directories(A INTERFACE ${CMAKE_CURRENT_SOURCE_DIR})
3 target_compile_definitions(A INTERFACE "DEBUG=1")

project/1ibB/CMakeLists.txt

1 add_library(B SHARED source.cpp)
2 target_link libraries(B PRIVATE A)

Dennis Klein Modern CMake C++ User Group Meeting 21-44 12 /26

Target Relationships
.

Exported Targets

Idiom
Declare properties that are relevant for consuming a library/executable at target scope.J

Dennis Klein Modern CMake C++ User Group Meeting 21-44 13 /26

Target Relationships
.

Exported Targets

Idiom
Declare properties that are relevant for consuming a library/executable at target scope.J

In addition to the installed library files, a CMake script can be generated and installed
along, that contains a description of all installed targets and their properties.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 13 /26

Target Relationships
.

Exported Targets

1

Idiom
Declare properties that are relevant for consuming a library/executable at target scope.J

In addition to the installed library files, a CMake script can be generated and installed
along, that contains a description of all installed targets and their properties.

Add targets to an export set:
install (TARGETS <target> ... [EXPORT <export-set>] ...)

Dennis Klein Modern CMake C++ User Group Meeting 21-44 13 /26

Target Relationships
.

Exported Targets

Idiom
Declare properties that are relevant for consuming a library/executable at target scope.J

In addition to the installed library files, a CMake script can be generated and installed
along, that contains a description of all installed targets and their properties.

Add targets to an export set:
1 install(TARGETS <target> ... [EXPORT <export-set>] ...)

Install the export set:

1 install(EXPORT <export-set> DESTINATION <dir>
2 [NAMESPACE <namespace>] [FILE <name>.cmake] ...)

This installs the exported targets to a file <install-dir>/<dir>/<name>.cmake.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 13 /26

Target Relationships
°

CMake package

Definition
A CMake package consists of a top level CMake script file, which includes a version
CMake script and exported target set files.

If the top level CMake package file is installed in the search path, find _package()
can find and include the external CMake package without a dedicated Find*.cmake
module.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 14 / 26

https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html
https://cmake.org/cmake/help/latest/command/find_package.html

Target Relationships
°

CMake package

Definition
A CMake package consists of a top level CMake script file, which includes a version
CMake script and exported target set files.

If the top level CMake package file is installed in the search path, find _package()
can find and include the external CMake package without a dedicated Find*.cmake
module.

Example

1 1list(PREPEND CMAKE_PREFIX_PATH $ENV{ROOTSYS})
2 find_package (ROOT REQUIRED COMPONENTS RIO Net)

https://cmake.org/cmake/help/latest/manual/cmake-packages.7 .html

https://cmake.org/cmake/help/latest/command/find_package.html

Dennis Klein Modern CMake C++ User Group Meeting 21-44 14 / 26

https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html
https://cmake.org/cmake/help/latest/command/find_package.html

Target Relationships
.

Imported Targets

Include exported target set or find CMake package

include (${FAIRROOTPATH}/include/cmake/FairMQ.cmake)
or

find_package (FairRoot)

...

target_link_libraries(A PUBLIC FairRoot::FairMQ)

Ut W N =

Dennis Klein Modern CMake C++ User Group Meeting 21-44 15 / 26

Target Relationships
.

Imported Targets

Include exported target set or find CMake package

include (${FAIRROOTPATH}/include/cmake/FairMQ.cmake)
or

find_package (FairRoot)

...

target_link_libraries(A PUBLIC FairRoot::FairMQ)

Ut W N =

Define imported targets in a find module, e.g. Findnanomsg. cmake

find_path(NANOMSG_INCLUDE_DIR NAMES nanomsg/nn.h)
find_library (NANOMSG_LIBRARY_SHARED NAMES nanomsg)
include (FindPackageHandleStandardArgs)
find_package_handle_standard_args(nanomsg

REQUIRED_VARS NANOMSG_LIBRARY_SHARED NANOMSG_INCLUDE_DIR)
if (NOT TARGET nanomsg)

add_library(nanomsg SHARED IMPORTED)

set_target_properties(nanomsg PROPERTIES

IMPORTED_LOCATION ${NANOMSG_LIBRARY_SHARED}

10 INTERFACE_INCLUDE_DIRECTORIES ${NANOMSG_INCLUDE_DIR})
1 endif ()

-_—
Dennis Klein Modern CMake C++ User Group Meeting 21-44 15/ 26

© 00 N O g W N =

-

Generator Expressions
®00

Generator Expressions

Generator Expressions

Dennis Klein Modern CMake C++ User Group Meeting 21-44 16 / 26

Generator Expressions
oceo

Two-pass Configure

1
2
3
4

cd <build-dir>

cmake -DCMAKE_INSTALL_PREFIX=<install-dir> <source-dir>
make

make install

Dennis Klein Modern CMake C++ User Group Meeting 21-44 17 / 26

Generator Expressions
oceo

Two-pass Configure

cd <build-dir>

cmake -DCMAKE_INSTALL_PREFIX=<install-dir> <source-dir>
make

make install

[N CR SR

or

1 cmake -S <source-dir> -B <build-dir> -DCMAKE_INSTALL_PREFIX=<install-dir>
2 cmake --build <build-dir>
3 cmake --build <build-dir> --target install

Dennis Klein Modern CMake C++ User Group Meeting 21-44 17 / 26

Generator Expressions
oceo

Two-pass Configure

cd <build-dir>

cmake -DCMAKE_INSTALL_PREFIX=<install-dir> <source-dir>
make

make install

e oW N =

or

1 cmake -S <source-dir> -B <build-dir> -DCMAKE_INSTALL_PREFIX=<install-dir>
2 cmake --build <build-dir>
3 cmake --build <build-dir> --target install

The configure step is implemented with a two-pass logic:
@ Configuration pass - evaluates your CMakeLists.txt scripts

@ Generation pass

Usually printed at the end of a CMake configure:

-- Configuring done
-- Generating done
-- Build files have been written to: <build-dir>

Dennis Klein Modern CMake C++ User Group Meeting 21-44 17 / 26

Generator Expressions
ocoe

Generator Expressions

$<condition:true_string>
$<KEYWORD:list/string/expr>
$<KEYWORD:argl,arg2[,arg3]>

Dennis Klein Modern CMake C++ User Group Meeting 21-44 18 / 26

https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

Generator Expressions
ocoe

Generator Expressions

$<condition:true_string>
$<KEYWORD:list/string/expr>
$<KEYWORD:argl,arg2[,arg3]>

Examples

Build and installation locations of header files might differ:

1 target_include_directories(A PUBLIC
2 $<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
3 $<INSTALL_INTERFACE:include>)

Dennis Klein Modern CMake C++ User Group Meeting 21-44 18 / 26

https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

Generator Expressions
ocoe

Generator Expressions

$<condition:true_string>
$<KEYWORD:list/string/expr>
$<KEYWORD:argl,arg2[,arg3]>

Examples

Build and installation locations of header files might differ:

1 target_include_directories(A PUBLIC
2 $<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
3 $<INSTALL_INTERFACE:include>)

Invoke an executable as custom command:

1 add_custom_command (TARGET A PRE_BUILD
2 COMMAND $<TARGET_FILE:R0OOT::cling> ...)

https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

Dennis Klein Modern CMake C++ User Group Meeting 21-44 18 / 26

https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

Functions
[1}

Functions

Functions

Dennis Klein Modern CMake C++ User Group Meeting 21-44 19 / 26

Functions
oce

Functions

@ Use functions for lexical variable scope
e Use macros for dynamic variable scope (prefer functions if possible)

@ Return values from functions via: set(result varname PARENT_SCOPE).

Dennis Klein Modern CMake C++ User Group Meeting 21-44 20 / 26

Functions
oce

Functions

@ Use functions for lexical variable scope
e Use macros for dynamic variable scope (prefer functions if possible)

@ Return values from functions via: set(result varname PARENT_SCOPE).

Pass positional and optional arguments explicitely

Implement optional arguments with the CMakeParseArguments module.

1 # add_fairroot_library(name [SOURCES sourcel source2 ...]

2 # [HEADERS headerl header2 ...J] [NO_DICT_SRCS sourcel source2 ...]
3 # [DEPENDENCIES depl dep2 ...J] [LINKDEF linkdefl linkdef2 ...]

4 # [INCLUDE_DIRS 4incdirl incdir2 ...] [DEFINITIONS defl def2 ...J)
5 #

6 function(add_fairroot_library lib_NAME)

7 cmake_parse_arguments(lib "" ""

8 "SOURCES ; HEADERS ; NO_DICT_SRCS ; DEPENDENCIES ; LINKDEF ; INCLUDE_DIRS ; DEFINITIONS"
9 ${ARGN})

10 # access optional args via £{l1ib_SOURCES} or £{1ib_LINKDEF}

11 endfunction()

V.

Dennis Klein Modern CMake C++ User Group Meeting 21-44 20 / 26

Functions
[el

Style - Wrapper

Provide custom function with optional arguments:

1 add_fairroot_library(ParBase
2 SOURCES

3 FairContFact.cxx

4 FairDetParAsciiFilelo.cxx
5 (...)

6 FairRtdbRun.cxx

7 FairRuntimeDb.cxx

8

9

INCLUDE_DIRS $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>
10 DEPENDENCIES FairRoot::FairTools ROOT::RIO ROOT: :Core
11 LINKDEF ParBaseLinkDef.h

Dennis Klein Modern CMake C++ User Group Meeting 21-44 21 /26

Functions
oe

Style - plain CMake with opt-in

Plain CMake with opt-in custom function for root dictionary:

add_library(ParBase SHARED

FairContFact.cxx

FairDetParAsciiFilelo.cxx

¢...)

FairRtdbRun.cxx

FairRuntimeDb.cxx)
add_library(FairRoot::ParBase ALIAS ParBase)
target_include_directories(ParBase PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
target_link_libraries(ParBase PUBLIC FairRoot::FairTools ROOT::RI0O ROOT::Core)
fairroot_target_root_dictionary(ParBase LINKDEF ParBaseLinkDef.h)
install (TARGETS ParBase EXPORT FairRoot ...)

© 0w N Ot W N

=
=]

Dennis Klein Modern CMake C++ User Group Meeting 21-44 22 /26

Functions
°

ROQOT Dictionary Generation

argetRootDic
« > clo githubcom e o & D PO =
125
126 set(includeDirs $<TARGET_PROPERTY:${target}, INCLUDE_DIRECTORTES>)
127
128 # add a custom command to generate the dictionary using rootcling
129 # cmake-format: off
130 set(space " ")
131 add_custom_command(
132 OUTPUT ${dictionaryFile} ${pcmFile} ${rootmapFile}
133 VERBATIM
134 COMMAND ${CMAKE_COMMAND} -E env "LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$ENV{LD_LIBRARY_PATH}"
135 ${ROOT_CINT_EXECUTABLE}
136 -f ${dictionaryFile}
137 -inlineInputHeader
138 -rmf ${rootmapFile}
139 -rml $<TARGET_FILE NAME:${target}>
140 -I$<JOIN:${includeDirs}, $<SEMICOLON>-I>
141 $<$<BOOL:${prop}>:-D$<JOIN: ${prop}, $<SEMICOLON>-D>>
142 ${headers}
143 COMMAND ${CMAKE_COMMAND} -E copy_ if_ different ${CMAKE_CURRENT_BINARY_DIR}/${pcmBase} ${pcmFile}
144 COMMAND_EXPAND_LISTS
145 DEPENDS ${headers})
146 # cmake-format: on

https://github.com/FairRootGroup/FairRoot/blob/master/cmake/modules/FairRootTargetRootDictionary.cmake

Dennis Klein

https://github.com/FairRootGroup/FairRoot/blob/master/cmake/modules/FairRootTargetRootDictionary.cmake

Testing CMake
°0

Testing CMake

Testing CMake

Dennis Klein Modern CMake C++ User Group Meeting 21-44 24 /26

Testing CMake
oce

CMake is totally testable

There is no excuse to not test CMake functions/macros! ;-P

Linux - CMake 3.21

@ Summary
Jobs
v @ Test
© Linux- CMake 3.21 seres sy

FairfindPackage2.f:

@ Linux - CMake 3.20
@ Linux - CMake 3.19
@ Linux - CMake 3.18
@ Linux - CMake 3.17
@ Linux - CMake 3.16

@ Linux - CMake 3.15

Fairsummary. fair
@ macOS - CMake 3.20 2 9: Fairsummary. fair_su
Fairsummary
Fairsummary. fair
: Fairsummary. fair

FairSumnary

Modern CMa

https://github.com/FairRootGroup/FairCMakeModules/tree/main/tests

Testing CMake
°

FairCMakeModules

Tested and documented CMake Module library

Deduplicate CMake code otherwise copied literally in multiple of our repos
Docs: https://fairrootgroup.github.io/FairCMakeModules/latest/
Sources: https://github.com/FairRootGroup/FairCMakeModules

Open source and open development, you are welcome to use/fork/contribute to it!

Dennis Klein Modern CMake C++ User Group Meeting 21-44 26 / 26

https://fairrootgroup.github.io/FairCMakeModules/latest/
https://github.com/FairRootGroup/FairCMakeModules

Testing CMake
°

FairCMakeModules

Tested and documented CMake Module library

Deduplicate CMake code otherwise copied literally in multiple of our repos
Docs: https://fairrootgroup.github.io/FairCMakeModules/latest/
Sources: https://github.com/FairRootGroup/FairCMakeModules

Open source and open development, you are welcome to use/fork/contribute to it!

Thank you for your attention!

Dennis Klein Modern CMake C++ User Group Meeting 21-44 26 / 26

https://fairrootgroup.github.io/FairCMakeModules/latest/
https://github.com/FairRootGroup/FairCMakeModules

	Introduction
	Properties
	Scopes
	Propagation
	Generic Accessors

	Target Relationships
	Expressing Dependencies
	Exported Targets
	CMake package
	Imported Targets

	Generator Expressions
	Functions
	Style
	ROOT Dictionary Generation

	Testing CMake
	FairCMakeModules

