

PANDA Collaboration Meeting 2021/3 GSI Darmstadt (Online), Germany

Benjamin Hetz WWU Münster

living.knowledge

Bundesministerium für Bildung Institut für Kernphysik und Forschung WWU Münster

Overview

- What may be the sources of residual gas inside the accelerator vacuum using a microsphere target?
	- Target source, beam dump backflow, pipe conductance?
- Simulation of microspheres injected into the vacuum
- Comparison of simulation with real jet/ion beam data
- Predictions of gas flows at PANDA using a jet and a pellet target configuration

- Wished by experiments:
	- A thick (>10¹⁵ atoms/cm²), localized (\approx some mm width), window-less target without time structure
	- No impact onto the accelerator vacuum (IP: $p \le 10^{-8}$ mbar)

- Reality:
	- \checkmark Thick (10¹⁵ atoms/cm²), localized (\approx (1 15) mm width) and window-less possible
	- \checkmark no time structure possible using a cluster-jet target
	- − Gas flow at IP of O(10-4 10-2 mbar l/s) depending on target thickness

Sources of the Residual Gas Flow

- If the target beam is perfectly aligned and not disturbed by any means, one could simply assume:
	- **Residual gas flow** is dominated by **beam dump** backflow and **target source** residual gas flow

Gas Backflow from the Beam Dump

- Studies of beam dump efficiency done at Münster using
	- PANDA cluster-jet target
	- PANDA beam dump (Genoa dump)
	- Next to PANDA geometry and pumping configuration

Gas Backflow from the Beam Dump

- Studies of beam dump efficiency done at Münster using
	- PANDA cluster-jet target
	- PANDA beam dump (Genoa dump)
	- Next to PANDA geometry and pumping configuration Pressure Ratio

atio

30 20 $10¹$

 $2\times10^{-}$

 $6\times10^{-}$

 10^-

 10^{-6}

- Result:
	- **Beam Dump efficiency of 33 %**
	- **IP gas load cannot be understood by beam dump efficiency and pipe conductance**

Relevant pressure range

Gas Flow from Target Source

- Studies similar to the beam dump efficiency studies were done at Münster and COSY using the PANDA cluster-jet target
- Added additional differential pumping stage at COSY with separate pump and shutter
- Reduced flow of $\langle 10^{-4} \text{ mbar} \, 1/s$ from this chamber to IP

- Result:
	- **No Influence on IP vacuum w/wo additional pumping chamber**
	- **Flow from source negligible**

Sources of the Residual Gas Flow

- If the target beam is perfectly aligned and not disturbed by any means, one could simply assume:
	- **Residual gas flow** is dominated by **beam dump** backflow and **target source** flow

- Only possible explanation:
	- **Some kind of intrinsic flow by the target particles**
	- What happens if a liquid or frozen microsphere (cluster/droplet/pellet) is injected into vacuum?

What happens if a microsphere is inside a vacuum?

• No different physics for big clusters, liquid droplets, solid pellets

- Due to vapour pressure:
	- ▸ Thin Knudsen-Layer of gaseous particles around microsphere surface
	- Mass loss rate: $\dot{m}_{net} = \dot{m}_{in} \dot{m}_{out}$

What happens if a microsphere is inside a vacuum?

- Mass loss (evaporation) \triangleright Surface cooling
	- $Ak \frac{\partial T(r=a)}{\partial r} = \dot{m} h_{sup/vap} + \sum \dot{Q}$
		- A: surface area, k: thermal conductance, h: Enthalpy
		- $\sum \dot{Q}$: thermal radiation, convection inside rest gas, ...
- Temperature distribution:
	- $\rho C \frac{\partial T}{\partial r} =$ $\overline{1}$ r^2 $\frac{\partial}{\partial r} (r^2 k \frac{\partial T}{\partial r})$
		- $\cdot \frac{\partial T}{\partial r}(0,t) = 0$ (symmetry)
		- $T(r=a, t) = T(Surface)$

Fig: static microsphere in vacuum

Behaviour of Liquid Microspheres moving inside vacuum

- Microspheres are produced from liquid hydrogen
- **Cluster target production chamber vacuum conditions** assumed
- Assuming supercooling, all microspheres reach same equilibration temperature

Behaviour of Liquid Microspheres moving inside vacuum

- Microspheres are produced from liquid hydrogen
- **Droplet production chamber vacuum conditions** assumed (triple point conditions)
- Assuming supercooling, all microspheres reach same equilibration temperature

Behaviour of Liquid Microspheres moving inside vacuum

Is supercooling of microspheres happening?

Yes, it happens!

PANDA cluster-jet target

Cluster jet hits the skimmer. No bouncing clusters visible, cluster must be liquid.

Cluster jet hits doped with impurities as nucleation seeds. Bouncing clusters visible.

5 cm ▸ 0.2 ms ToF ▸ 8 K microsphere temperature

Direct observation of supercooling with a 5 µm hydrogen filament target using Raman spectroscopy.

Grisenti et al, Time-Resolved Study of Crystallization in Deeply Cooled Liquid Hydrogen DOI: 10.1103/PhysRevLett.106.245301

Evolution of the supercooled microspheres

- After a ToF of 1 ms the spheres are here $(\approx 30 \text{ cm}$ behind the nozzle)
- The moment they enter the accelerator vacuum, the vacuum is about $p \le 10^{-5}$ mbar
- Same vacuum conditions for cluster and pellets for the last \approx 20 ms ToF to dump

 \triangleright At some point the supercooled microspheres freeze out

Microsphere Freeze Out

- Plots show freeze out happening at most likely supercooled T assuming a Lennard-Jones-potential [1]
- 5 µm sphere freeze out in agreement with the measured 5 µm filament stream data [2]
- Relevant microsphere sizes freeze out inside target generators
- \triangleright There is a constant residual gas flow from microspheres per length unit inside the accelerator vacuum

Benjamin Hetz – WWU Münster – PANDA Collaboration Meeting 2021/3 **16** DOI: 10.1103/PhysRevLett.56.2380 Cooled Liquid Hydrogen, DOI: 10.1103/PhysRevLett.106.245301 [1] Seidel, Williams, et al, Supercooling of liquid hydrogen, [2] Grisenti et al, Time-Resolved Study of Crystallization in Deeply

Concrete Microsphere Freeze Out Time

• Measurements and Models:

[1] Grisenti et al, Time-Resolved Study of Crystallization in Deeply Cooled Liquid Hydrogen, DOI: 10.1103/PhysRevLett.106.245301 [2] Seidel, Williams, et al, Supercooling of liquid hydrogen, DOI: 10.1103/PhysRevLett.56.2380 [3] Seidel, Williams et al, Seidel, Williams, et al, Supercooling of liquid H2 and the possible production of superfluid H2, DOI: 10.1007/BF00683224

Effect of the Ion Beam onto the Microspheres

- $Ak \frac{\partial T(r=a)}{\partial r} = \dot{m} h_{sup/ vap} + \sum \dot{Q}$, additional $\dot{Q} = \rho f \eta S r^2 \cdot \text{rect}(vt \in IP)$ for ion beam heating at IP with target thickness ρ , frequency f and stopping power S
- Simulation shown for PANDA HL mode
- **Maximal flow is not the net IP flow!**
	- Microspheres fly with $(50 300)$ m/s, Ion beam passing time $(1 - 100)$ μ s, One must include movement of spheres and pipe conductance!
- Microsphere heating up by \approx 4 K ▸ ≈11 K sphere temperature!

Vacuum Predictions and Measurements of the Cluster-Jet Target

- Sphere evaporation inside the target beam pipe is simulated with:
	- (Super-)cooling and freezing with mean supercooled liquid lifetime from literature,
	- Ion beam heating at IP,
	- Monte Carlo vacuum conduction simulations using MolFlow+ and realistic experiment geometries, and the results are compared with cluster-jet and ion beam measurements at COSY.

Vacuum Predictions and Measurements of the Cluster-Jet Target

Vacuum Predictions of Microsphere Targets

- Predictions of residual gas flows with realistic target dimensions
- Plot:
	- 2×10^{15} atoms/cm² target thickness
	- Target point dimensions:
		- PANDA jet target like: $(1x15)$ mm²
		- WASA pellet target like: 4 mm spread
- **Residual gas differs only by a factor of 2.3!**

Summary

- The most residual gas at PANDA will **not** be induced by means of conductance effects from source/dump
- Clusters/droplets and pellets **evaporate** inside vacuum and induce the main residual gas load
- Supercooled microspheres have very **different lifetimes before freezing**, measurements needed
- Simulations of gas load are in **perfect agreement** with measurements at Münster and COSY using the PANDA cluster-jet target and an ion beam
- **Vacuum predictions** for different kinds of targets can be made with high precision and arbitrary vacuum chamber/pipe configurations
- There will be only a factor of **2.3 difference concerning vacuum** conditions of cluster-jet and pellet target operation, pellet vacuum measurements would be welcome

Thank you for your attention!

living.knowledge