
Update on the A Analysis with Kinematic Fitting at HADES

Jenny Regina

Uppsala University
Department of Physics and Astronomy

PANDA CM Hyperon and Hypernuclei Session October 27, 2021

Outline

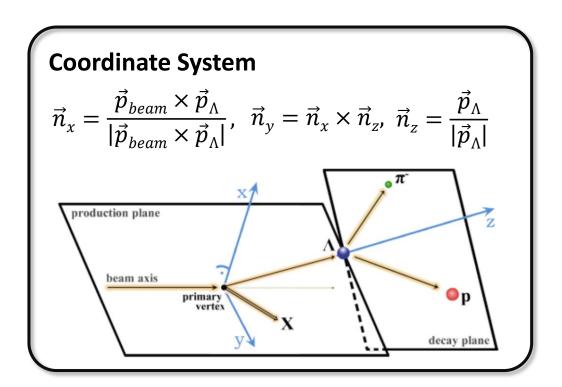
- Motivation
- Updated analysis procedure
- Tests on Data
- Outlook

Why Kinematic refit?

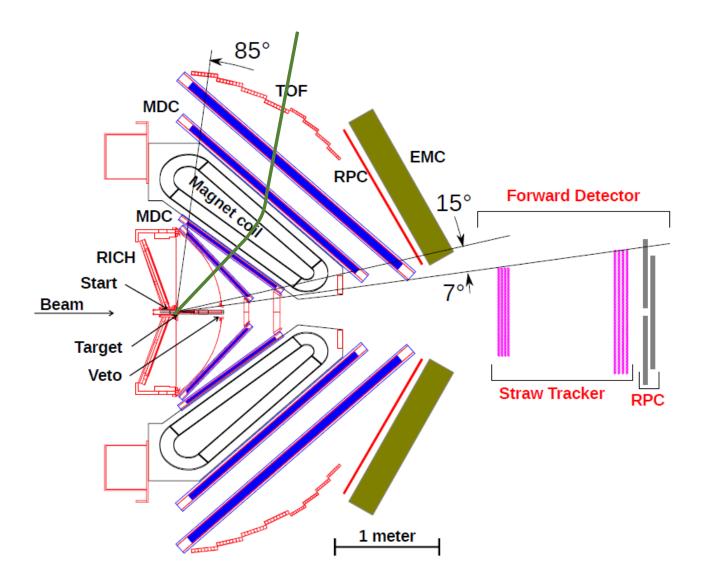
- Λ Polarization in pp reactions

Previous study:

Polarization of Λ Hyperons In Proton-Proton Reactions At 3.5 GeV
 Measured With Hades, see PoS(INPC2016)275


Number of Λ as a function of $\cos(\zeta)$

$$\frac{dN}{d\cos(\zeta)} = C(1 + \alpha P \cos(\zeta))$$


P-polarization

C-constant α -decay asymmetry parameter of Λ decay

- Difference between generated and reconstructed polarization angle show large uncertainty
 - Kinematic refit might improve resolutions and hence results

HADES Spectrometer

Main HADES Spectrometer

RICH: Electron identification **MDC:** Track reconstruction

TOF: Time-of-Flight **RPC:** Time-of-Flight

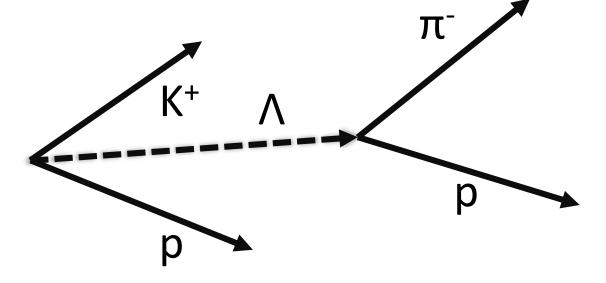
Forward detector

EMC: improved energy information for electrons

and leptons

Straw Tracker: Based on PADNA Forward Straw

Trackers


RPC: Time-of-Flight

Tracks

- Tracks represented by straight lines in two regions free from magnetic field
 - 1) before magnets (Reconstruction in MDC I/II)
 - after magnets (Reconstruction in MDC III/IV)
- First region extends to ~ 1 m after the nominal interaction point -> FOCUS ON!

Simulation Details

- 10 000 000 Pluto events
- April 12 Detector setup
- Geant Particle ID (Ideal PID) used to identify p, π^- and K⁺
- Choose only reaction particles

Analysis Procedure

Updated since last Analysis Meeting [*]

- 1. Combine all protons + kaons
 - 1. Find the primary vertex
 - 2. Combine all protons + pions
 - 3. Find the decay vertex
- 2. If one primary and one decay vertex found:
 - 1. Build the neutral mother candidate from all possible combinations of vertices
 - 2. Pass the decay particles + neutral mother candidate to the kinematic fit
 - 3. Select the combination of vertices that correspond to the kinematic fit with the highest fit probability
 - 4. Select only events where both vertices were found with two different protons

Issues:

- Low efficiency for building the entire event, 29% for 1 250 000 events
- Slow, a lot of combinatorics

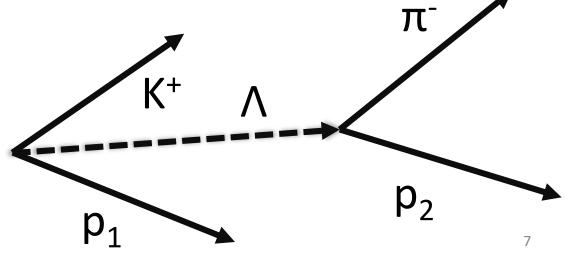
See backup for details on vertex finding, neutral mother candidate creation and kinematic fitting

Analysis Procedure

Updated since last Analysis Meeting [*]

- 1. Combine all protons + kaons
 - 1. Find the primary vertex
- Combine all protons + pions
 - 1. Find the decay vertex
- 3. If one primary and one decay vertex found:
 - Build the neutral mother candidate from all possible combinations of vertices
 - 2. Pass the decay particles + neutral mother candidate to the kinematic fit
 - 3. Select the combination of vertices that correspond to the kinematic fit with the highest fit probability
 - 4. Select only events where both vertices were found with two different protons

New Procedure:

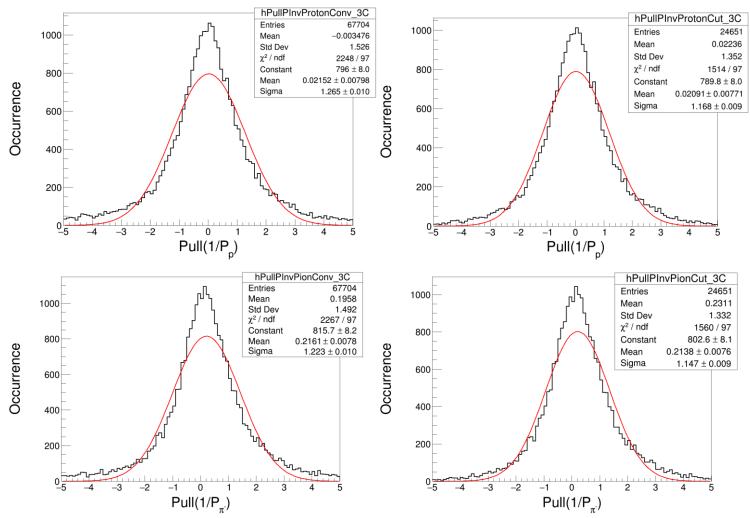

- 1. Combine all protons + kaons
 - 1. Find the primary vertex
- 2. Combine all protons + pions
 - 1. Find the decay vertex
- 3. If one primary and one decay vertex found:
 - 1. Select only events where both vertices were found with two different protons
 - 2. Build the neutral mother candidate from all possible combinations of vertices
 - 3. Pass the decay particles + neutral mother candidate to the kinematic fit
 - 4. Select the combination of vertices that correspond to the kinematic fit with the highest fit probability

Efficiencies

	Particle in the reaction /	Number of reconstructed tracks
	combination of particles	(% of generated particles)
_	<i>p</i> ₁	3 911 109 (39.1%)
	K^+	2 319 958 (23.2%)
	p_2	1 915 314 (30.0%)
	π^-	2 055 923 (32.2%)
	p_1 and K^+ (primary particles)	802 751 (8.0%)
	p_2 and π^- (Λ decay products)	777 792 (12.2%)
	p_1, K^+ and p_2	101 457 (1.6%)
	p_1,K^+ and π^-	127 823 (2.0%)
	p_2, π^- and p_1	251 314 (3.9%)
	p_2,π^- and K^+	111 173 (1.7%)
	p_1, K^+, p_2 and π^- (all particles)	32 155 (0.5%)

After analysis procedure and selection

	Proton selection purity in vertices
24 292 (76%)	99.5%

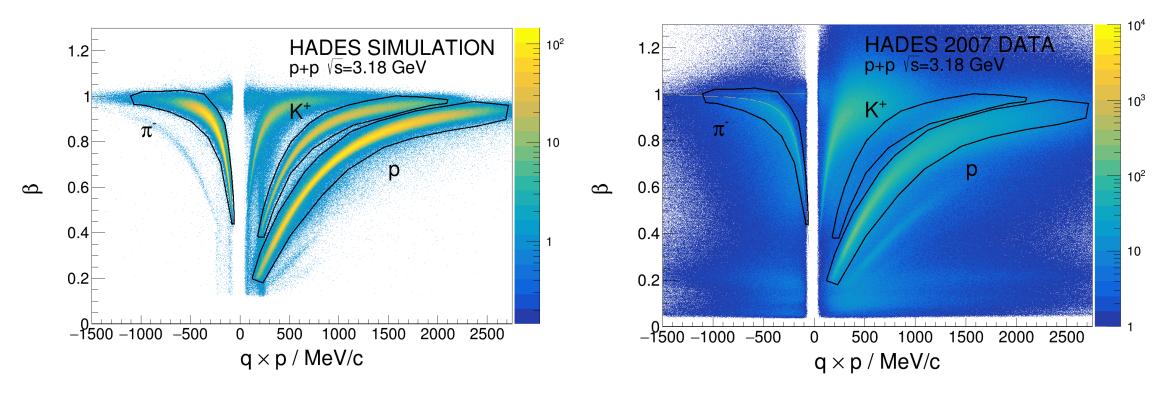


Pulls after the fit

$$z_i = \frac{y_i - \eta_i}{\sqrt{\sigma^2(y_i) - \sigma^2(\eta_i)}}$$

Ideally N(0,1)

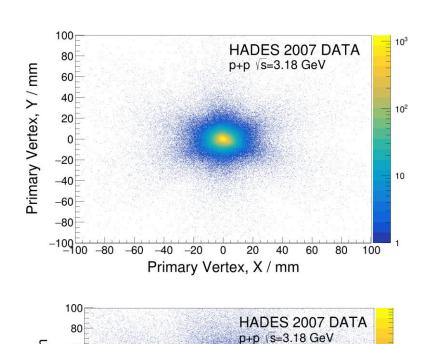
- Previously there have been issues with the pull distributions with cutoffs
- Similar for all fitted parameters for proton and pion
- Now the pulls look good
- σ gets closer to 1.0 when applying the probability cut
- Similar for all parameters



Analysis on Experimental Data

- p + p @ 3.5 GeV Collected in 2007
- Skimmed data set
 - At least 1 negatively charged + 3 positively charged particles
- PID made from MDC information

PID Selection


Cuts placed for simulation and overlaid for experimental data

- Might expand cut regions to allow more particles in analysis
- Use everything to the left as negatively charged particles

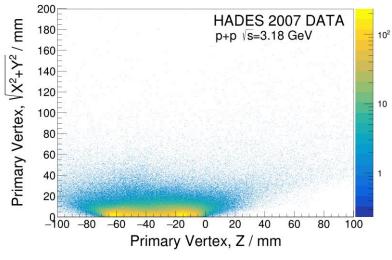
Reconstructed Vertices

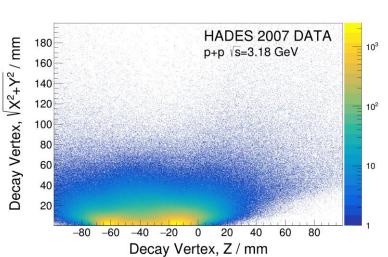
80

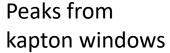
-20

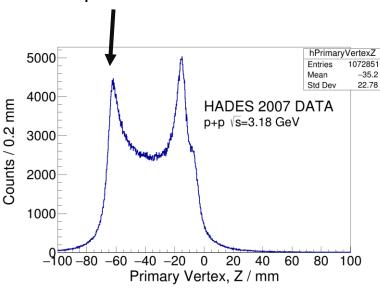
Decay Vertex, X / mm

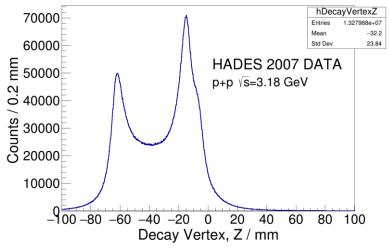
Decay Vertex, Y / mm

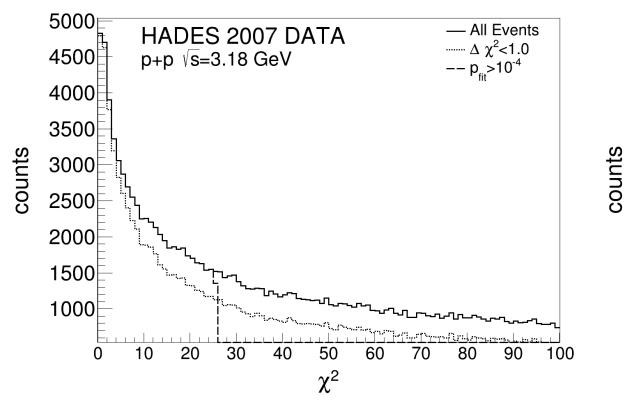

60

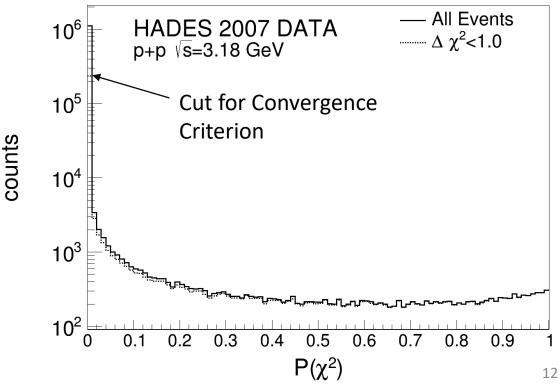

40

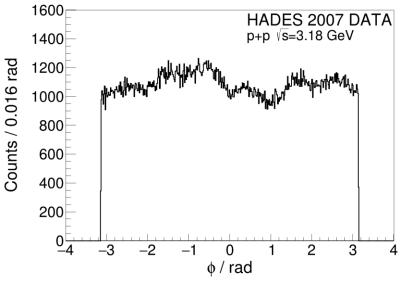

20


-20


-100 -80 -60






χ^2 and P(χ^2)

- Allow up to 10 iterations
- Convergence criterion mainly cuts away events with large χ^2 and low probability

Reconstructed A Parameters after Fit

p+p √s=3.18 GeV

2.5

1.5

 θ / rad

4500

4000

3500

3000

2500

2000

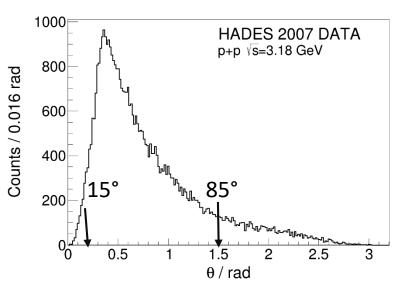
1500

1000 500

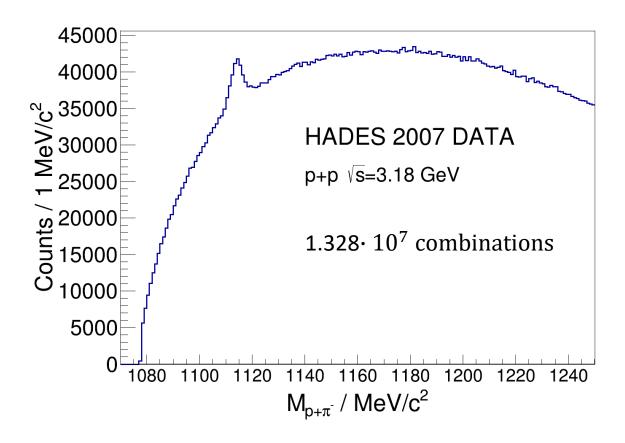
0.5

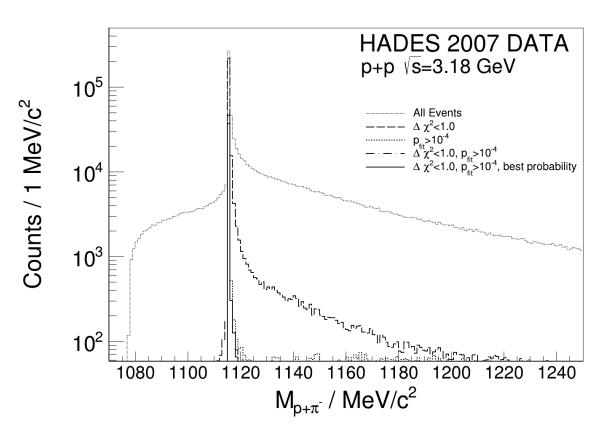
Counts / 0.016 rad

HADES 2007 DATA


Convergence criterion applied for all histograms

Apply probability cut


Applying probability cut mainly keeps events with θ in **HADES** acceptance



Mass histograms

Mass histogram for all combinations

Mass histograms after fit with different conditions

Final Mass

Mass mainly chosen around nominal Λ mass (Should add cut to remove contribution from kapton windows)

Summary

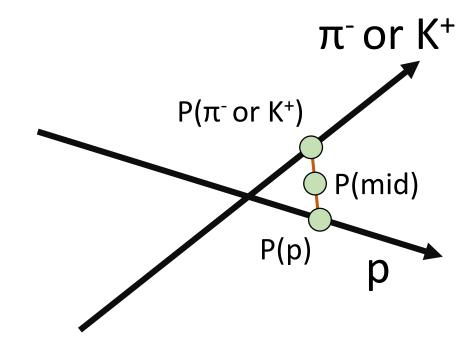
- An analysis method based on kinematic fitting has been developed for neutral hyperons or relatively long-lived particles
- Yields high efficiencies after final selection
- Excellent combinatorial background suppression –chooses correct proton in correct vertex
- The fitting works for the old experimental data

Outlook

- Add background to simulation
 - Do in older HYDRA version with similar detector setup and target geometry as that for the data taking
- Calculate signal over background ratios
- In data: apply cut to remove contribution from kapton windows
- Can expand analysis procedure to work inclusively at the calculation of the primary vertex

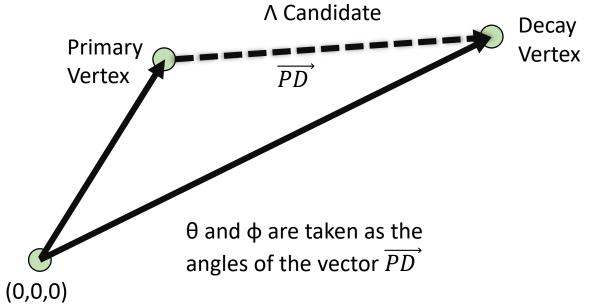
Summary

- An analysis method based on kinematic fitting has been developed for neutral hyperons or relatively long-lived particles
- Yields high efficiencies after final selection
- Excellent combinatorial background suppression –chooses correct proton in correct vertex
- The fitting works for the old experimental data


Thank you for your attention! Questions?

Vertex Estimation

- Done for both primary vertex and decay vertex
- Calculate P(mid) = 1/2 (P(π or K⁺) P(p))
- Take P(mid) as estimated vertex


Class from HYDRA (HADES Framework): HGeomVertexFit.C

- Uses a least square fit to find the vertex as the midpoint between a set of tracks
- Used in current analysis with two tracks

Building the Neutral Mother Candidate

1. Calculate the angles and errors

Errors in θ and ϕ :

Take the vertex resolutions in each direction (x,y,z) as the errors (slide 11) Propagate to θ and φ (see backup slides)

2. Calculate the initial momentum

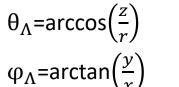
Initial A momentum estimate

$$p_{\Lambda} = \sqrt{E_p^2 + 2E_p E_{\pi^-} + E_{\pi^-}^2 - m_{\Lambda}^2}$$

$$E = \sqrt{m^2 + p^2}$$
 For both proton and pion

4 Momentum Conservation In Decay Vertex

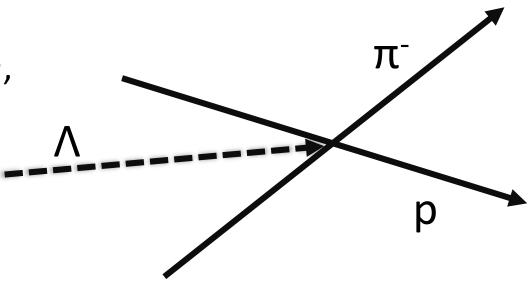
Iterative fitting procedure based on Lagrange multipliers (see backup for equations)


Constraint Eqs. f, with measured, η , and unmeasured, ξ , quantities:

$$f_K\left(\eta_1,\eta_2,\ldots,\eta_N\,,\xi_1,\xi_2,\ldots,\xi_J\right)=0$$

where

$$\overrightarrow{\eta}=(P_{\pi^-},\theta_{\pi^-},\phi_{\pi^-},P_p,\theta_p,\phi_p,\phi_\Lambda,\varphi_\Lambda)$$


$$\vec{\xi} = (P_{\Lambda})$$
 P_{Λ} - need start value for iterations

where

$$r = \sqrt{(x^2 + y^2 + z^2)}$$

x,y,z – coordinates of calculated Λ vector

3C fit constraints:

$$f_{1} = -p_{\Lambda}sin\theta_{\Lambda}cos\varphi_{\Lambda} + p_{\pi^{-}}sin\theta_{\pi^{-}}cos\varphi_{\pi^{-}} + p_{p}sin\theta_{p}cos\varphi_{p} = 0 \quad (p_{x})$$

$$f_{2} = -p_{\Lambda}sin\theta_{\Lambda}sin\varphi_{\Lambda} + p_{\pi^{-}}sin\theta_{\pi^{-}}sin\varphi_{\pi^{-}} + p_{p}sin\theta_{p}sin\varphi_{p} = 0 \quad (p_{y})$$

$$f_{3} = -p_{\Lambda}cos\theta_{\Lambda} + p_{\pi^{-}}cos\theta_{\pi^{-}} + p_{p}cos\theta_{p} = 0 \quad (p_{z})$$

$$f_{4} = -\sqrt{p_{\Lambda}^{2} + m_{\Lambda}^{2}} + \sqrt{p_{\pi^{-}}^{2} + m_{\pi^{-}}^{2}} + \sqrt{p_{p}^{2} + m_{p}^{2}} = 0 \quad (E).$$

Vertex Constraint in Fitting Procedure

Iterative fitting procedure based on Lagrange multipliers (see backup for equations)

Track Representation

$$\left(\frac{1}{p}, \theta, \varphi, R, Z\right)$$

- p particle momentum
- θ polar angle
- φ azimuthal angle
- R- closest **distance** of track to beam line
- Z- closest **point** along beamline

Vertex Constraint, 1C fit

$$d = (d_1 \times d_2) \cdot (b_1 - b_2)$$

Equivalent to minimizing the distance between two lines

Fitting Procedure

Equations

$$f_K (\eta_1, \eta_2, ..., \eta_N, \xi_1, \xi_2, ..., \xi_J) = 0$$

 $\chi^2 = (y - \eta)^T V^{-1} (y - \eta) = minimum$
 $f(\eta, \xi) = 0$

f- constraint function η – set of measured quantities ξ – set of unmeasured quantities λ – Lagrange multipliers

$$\chi^2 = (y - \eta)^T V^{-1} (y - \eta) + 2\lambda^T f(\eta, \xi) = minimum$$

Finding parameters that minimize the equations

$$\nabla_{\eta} \chi^{2} = -2V^{-1}(y - \eta) + 2 F_{\eta}^{T} \lambda = 0$$

$$\nabla_{\xi} \chi^{2} = 2F_{\xi}^{T} \lambda = 0$$

$$\nabla_{\xi} \chi^{2} = 2 f(\eta, \xi) = 0$$

$$(F_{\eta})_{ki} = \frac{\partial f_{k}}{\partial \eta_{i}} \quad (F_{\xi})_{kj} = \frac{\partial f_{k}}{\partial \xi_{j}}$$

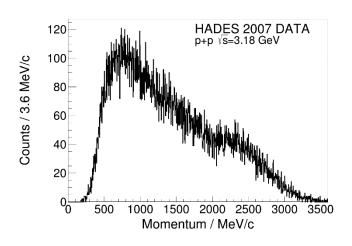
Fitting Procedure

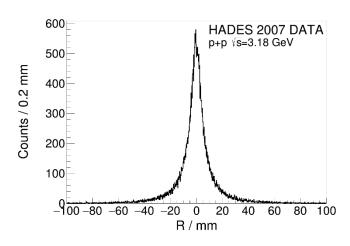
Solution can be found iteratively

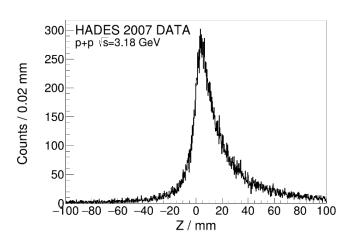
1.
$$\xi^{\nu+1} = \xi^{\nu} - lr(F_{\xi}^T S^{-1} F_{\xi})^{-1} F_{\xi}^T S^{-1} r$$

2.
$$\lambda^{\nu+1} = S^{-1}[r+F_{\xi}(\xi^{\nu+1}-\xi^{\nu})]$$

$$\mathbf{3.} \qquad \eta^{\nu+1} = y - lrVF_{\lambda}^T \lambda^{\nu+1}$$


4.
$$V^{\nu+1} = V^{\nu} - lrV^{\nu} [F_{\eta}^{T} S^{-1} F_{\eta} - ((F_{\eta}^{T} S^{-1} F_{\xi}) (F_{\xi}^{T} S^{-1} F_{\xi})^{-1} (F_{\eta}^{T} S^{-1} F_{\xi})^{T})] V^{\nu}$$


where


$$r = f^{\nu} + F_{\eta}^{\nu}(y - \eta^{\nu})$$
 $S = F_{\eta}^{\nu}V^{-1}(F_{\eta}^{T})^{\nu}$

Ir – parameter between 0 and 1

Reconstructed A Parameters

