

Investigating the Σ^0 Production In p(3.5GeV)+p Collisions

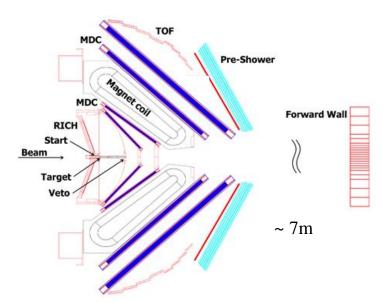
26 Oct 2021 Waleed Esmail & James Ritman

PANDA Collaboration Meeting 25-29 Oct 2021

An Overview

Motivation:

- The study of hyperon production in p+p collisions at **energies of a few GeV** is important for a better **understanding of the strong interaction**
- Is crucial as a baseline for in-depth studies of the heavy ion collisions
- Hyperon radiative decay provides a clean probe of the hyperon wave function
- There **are few measurements** for Σ^0 hyperon


Dataset:

- Proton beam (3.5 GeV) incident on LH2 target
 with 50 mm thickness collected in 2007
- In total there were 1.14 × 109 LVL1 events

Reaction:

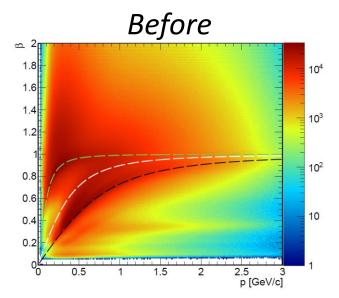
Exclusive reconstruction of

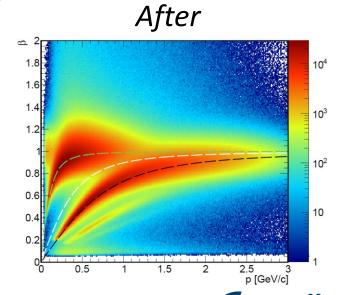
$$p + p \rightarrow p + K^+ + \Sigma^0$$
, BR $(\Sigma^0 \rightarrow \Lambda \gamma) \sim 100\%$

Reconstruction Strategy

- 1. Time of flight reconstruction
- 2. Charged Particle Identification PID
- 3. Lambda Reconstruction
 - i. HADES data-set
 - ii. The Forward Wall data-set
- 4. Kinematic Refit
- 5. Sigma Reconstruction
- **6. Efficiency Correction**
- 7. Physics Conclusions

Time of Flight Reconstruction

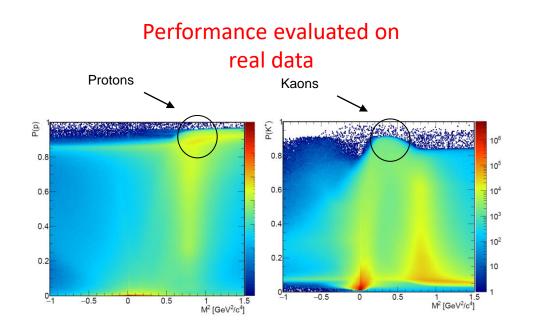


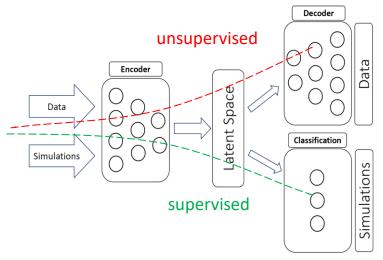


- Important variable for the PID algorithm
- At *least one particle must be identified*, π^- were identified (no correlation with RICH)

•
$$tof = \frac{L}{c} \cdot \frac{\sqrt{p^2 + m^2}}{p}$$
, with $tof = t_s + t_0$

• An average common start time $\overline{t}_0 = \frac{\sum_i w_i t_{0,i}}{\sum_i w_i}$

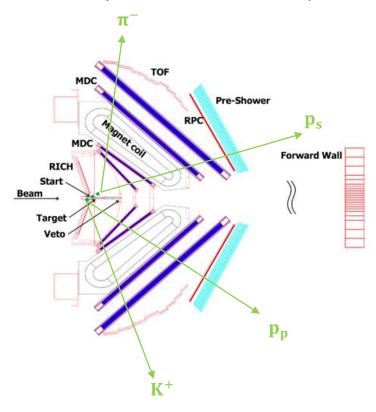

Particle Identification PID



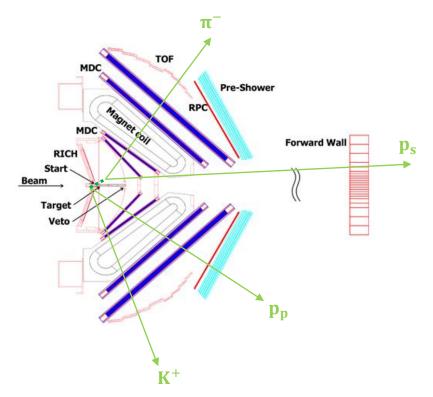
- Identification of **3 types** of particles: p, K^+ , π^+
- Deep Learning based PID: A multi-class classification problem
- But simulation does not model real data perfectly well (domain shift)

- Potential solution: Autoencoders
- Classification Accuracy: $\pi^+ \sim 92\%$, p $\sim 98\%$, K⁺ $\sim 76\%$

Lambda Reconstruction



$$p + p \rightarrow p + K^+ + \Sigma^0 \rightarrow p + K^+ + p + \pi^- + \gamma$$

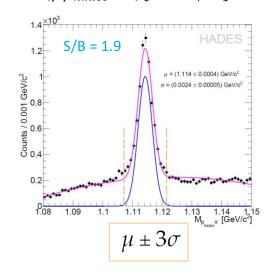

HADES data-set

✓ All particles in HADES acceptance

Wall data-set

- ✓ p, K⁺, π^- in HADES acceptance
- ✓ One hit in the FW

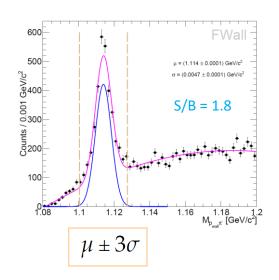
Lambda Reconstruction



Primary vertex: Intersection point or the PCA of pK⁺

$$-65 < z[mm] < -5$$

HADES data-set


- 1. $d(p, \pi^-) < 10 \text{ mm}$
- 2. $d(p, pvtx) < d(\pi^-, pvtx)$
- 3. $d(\Lambda, pvtx) < 6 mm$
- 4. $MM^2(pp_{hades}\pi^-)[GeV^2/c^4] > 0.2$

Wall data-set

1.
$$-0.02 < MM^2(pK^+p_{wall}\pi^-)[GeV^2/c^4] < 0.01$$

2.
$$MM^2(pp_{wall}\pi^-)[GeV^2/c^4] > 0.2$$

Kinematic Refit

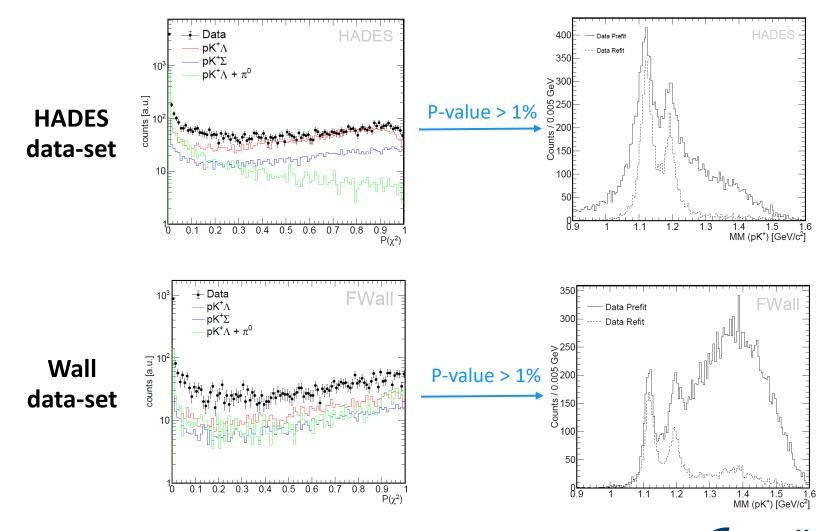
- A constrained fit to provide better estimation of track parameters
- Suppression of background + better mass resolution
- Based on Lagrange Multipliers*

$$\chi^2 = (y - \eta)^T V^{-1} (y - \eta) + 2\lambda^T f(\eta, \xi) \approx minimum$$

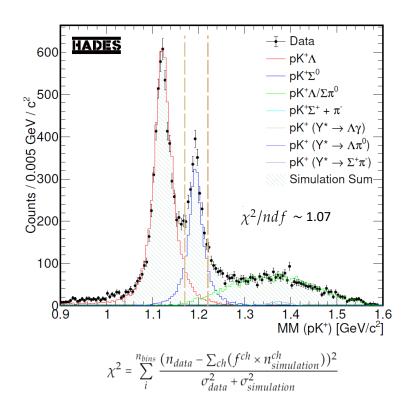
- Track parametrization 1/p, θ , ϕ
- Covariance matrix is estimated from the simulation and tuned via the pull distributions

Invariant mass constraint

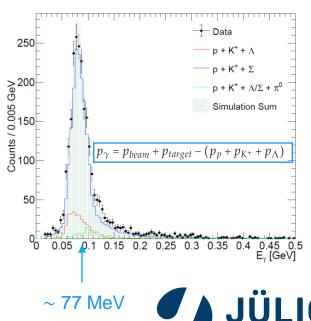
$$f = \begin{pmatrix} (E_{p_s} + E_{\pi^-})^2 - (\vec{p}_{p_s} + \vec{p}_{\pi^-})_x^2 - (\vec{p}_{p_s} + \vec{p}_{\pi^-})_y^2 - (\vec{p}_{p_s} + \vec{p}_{\pi^-})_z^2 - M_{\Lambda}^2 \\ (E_t + E_b - \sum_{i=1}^4 E_i)^2 - (\vec{p}_t + \vec{p}_b - \sum_{i=1}^{4n} \vec{p}_i)^2 - M_{\gamma}^2 \end{pmatrix} = 0$$


Missing mass constraint

Kinematic Refit



Sigma Reconstruction



•
$$1.170 < MM(pK^+)[GeV/c^2] < 1.220$$

• 2613 Σ⁰s: 58% HADES + 42% Wall (purity 81%)

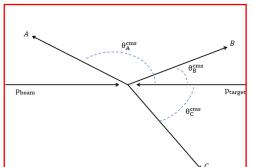
• Background: $pK^+\Lambda$ ~ 14% $pK^+\Lambda/\Sigma^0\pi^0$ ~ 5%

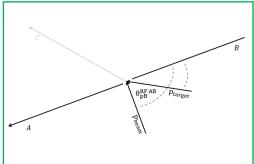
	Channel				
1	$p + p \rightarrow p + K^+ + \Lambda$				
2	$p + p \rightarrow p + K^+ + \Sigma(1385)$				
3	$p + p \rightarrow p + K^+ + \Lambda(1405)$				
4	$p + p \rightarrow p + p + \pi^+ + \pi^-$				
5	$p + p \rightarrow p + p + \pi^{+} + \pi^{-} + \pi^{0}$				
6	$p + p \rightarrow p + K^+ + \Sigma^0$				
7	$p + p \rightarrow p + K^+ + \Lambda + \pi^0$				
8	$p + p \rightarrow p + K^+ + \Sigma^0 + \pi^0$				
9	$p + p \rightarrow p + K^+ + \Sigma^+ + \pi^-$				

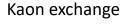
Forschungszentrum

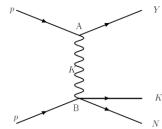
Reference Frames

1. Center of Mass CMS Frame:

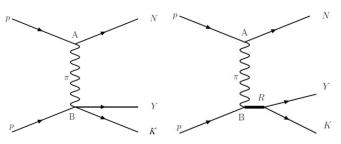

• The beam and target proton have identical momenta in opposite directions

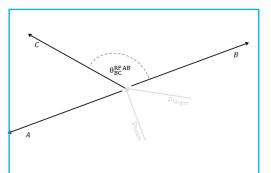

2. Gottfried Jackson G-F Frame:


• $cos\theta_{p,B}^{RF\ AB}$ is the polar angle between the final state particle B and the initial proton as measured in the rest frame of particles A and B


3. Helicity Frame:

 Defined similar to the G-F angle, but the angle with respect to the third produced particle is used





Pion exchange

Acceptance and Efficiency Correction

Experimental distributions are represented by binned histograms

$$M = RT$$

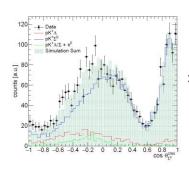
- R is the detector response and T is the true distribution
- R now is represented as a matrix

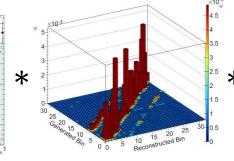
$$R_{ij} = P(\text{reconstructed in bin i} \mid \text{generated in bin j})$$

- Correction or data unfolding means to invert the response matrix
- Inversion is done via the Singular Value Decomposition SVD implemented using RooUnfold framework
- Since there are background events, a **purity matrix** is defined as

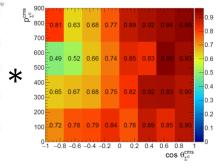
$$P_{bin} = \frac{n(pK^+\Sigma^0)}{n(pK^+\Lambda) + n(pK^+\Sigma^0) + n(pK^+\Lambda\pi^0)}$$

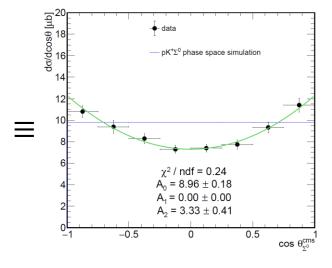
• True distribution is then given by: $T = R^{-1}MP$


Acceptance and Efficiency Correction



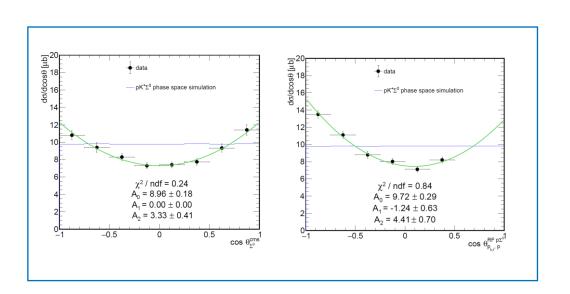
- Correction of Σ⁰ CMS angular distribution
- **2D** correction in $cos\theta^{cms}_{\Sigma^0}$ and $p^{cms}_{\Sigma^0}$
- The corrected number of Σ^0 events is transformed into a cross section:


$$\sigma_{\Sigma^0}[\mu b] = \frac{1}{N_{files}} \cdot \frac{\sigma_{pp}^{elastic}}{N_{pp}^{elastic}} \cdot N_{\Sigma^0} \cdot f_{downscale} \cdot 10^3$$

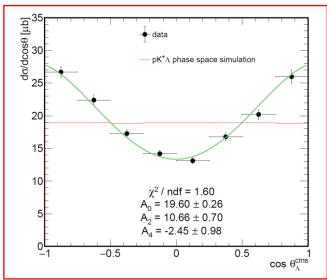

The measured distribution **M**

The inverse of the response matrix **R**-1

The purity matrix



Tunning the Simulation Model

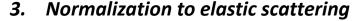


- Phase space simulations are weighted by $cos heta^{cms}_{\Sigma^0}$ and $cos heta^{RFp\Sigma}_{p_{b,t},p}$ obtained from data
- The helicity angular distributions are not affected by this weighting
- The purity matrix depends on the $pp \rightarrow pK^+\Lambda$ kinematics
- $pp \rightarrow pK^+\Lambda$ phase space simulation is folded by $cos\theta_{\Lambda}^{cms}$ obtained from data

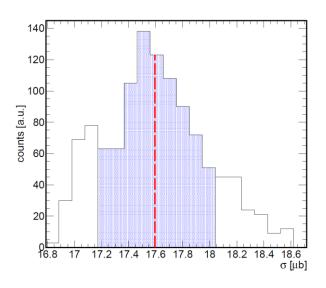
mass window $1.090 < MM(pK^+)[GeV/c^2] < 1.150$

same correction procedure

Systematic Errors


Possible sources:

1. PID (neural network uncertainty)

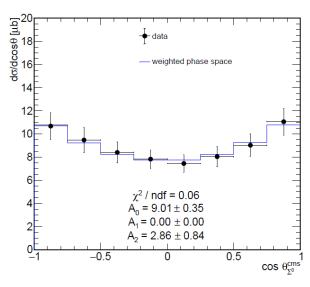

- Implemented dropout layers are activated during inference (a Bayesian Approximation §)
- *Introduces* ± 5% *error*

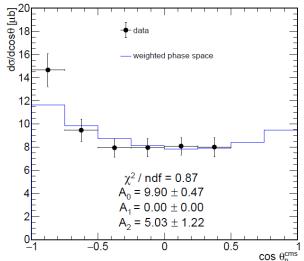
2. Analysis cuts (topological and missing mass cuts)

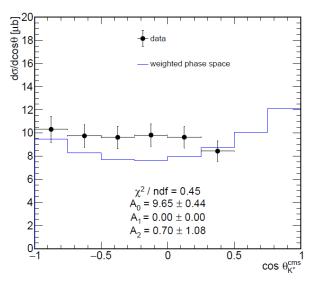
- Each cut is varied in two steps in either direction,
 the cross section is calculated for every cut combination
- The systematic uncertainty is defined as the 68% confidence central interval of this distribution
- Introduces ± 2% systematic error

• Introduces \pm 7% systematic error

same correction procedure

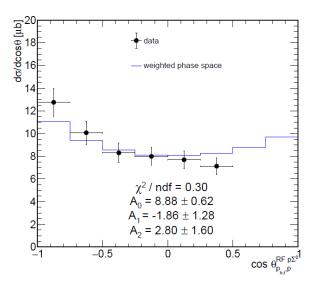

[§] Yarin Gal "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning" 2015

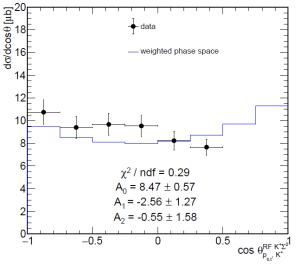


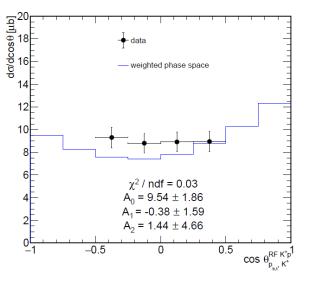


CMS frame

• An indication of dominantly **pion exchange** production mechanism

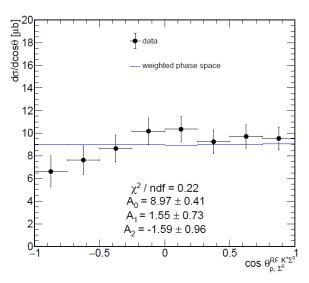


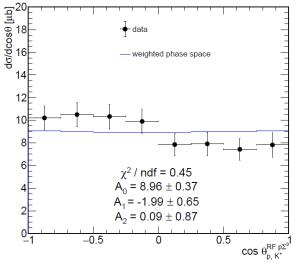


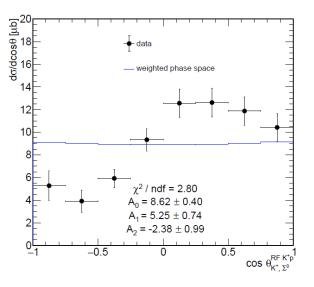


G-J Frame

• An indication that **more than one nucleon resonance** participates in the production process N^*/Δ^*

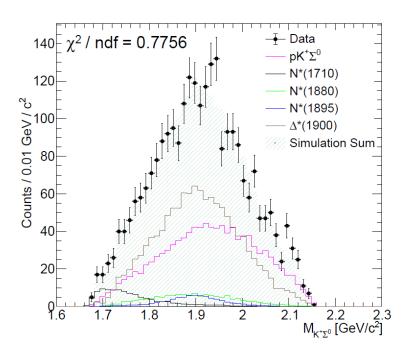






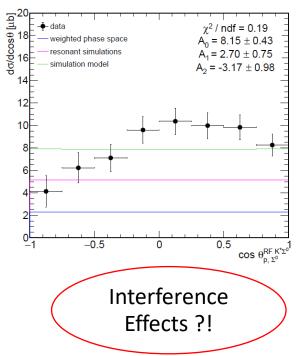
Helicity Frame

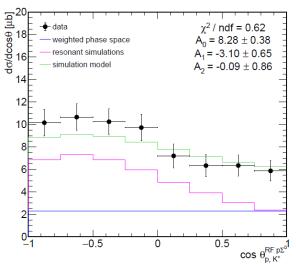
• Strongly non-isotropic, dominated by intermediate resonant production

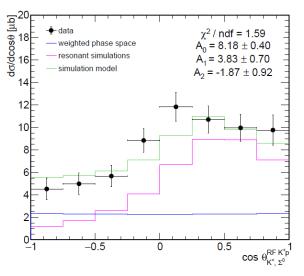


- The Incoherent Sum
- Isospin 1/2 N* or isospin 3/2 Δ^* could contribute to the production
- The **incoherent sum** of **resonances** and **phase space** have been scaled to match the experimental data
- A fit of phase space alone **result in** $\chi^2/ndf \sim 4.1$
- The cocktail fit result in $\chi^2/ndf \sim 0.8$

Resor	ance	Mass $[GeV/c^2]$	Width $[GeV/c^2]$	J^P	BR $(K^+\Sigma^0)$	ϵ [MeV]
$N^*(1$	710)	1.710	0.140	$\frac{1}{2}^+$	seen	528
$N^*(1$	875)	1.875	0.200	$\frac{3}{2}$	seen	363
$\parallel N^*(1$	880)	1.880	0.300	$\frac{1}{2}$	10-24%	358
$\parallel N^*(1$	895)	1.895	0.120	$\frac{1}{2}$	6-20%	343
N*(1	900)	1.920	0.200	$\frac{3}{2}$	3-7%	338
$\Delta^*(1$	900)	1.860	0.250	$\frac{1}{2}$	seen	338
$\Delta^*(1$	910)	1.900	0.300	$\frac{1}{2}$	4-14%	328
$\Delta^*(1$	920)	1.920	0.300	$\frac{3}{2}^{+}$	2-6%	318







Helicity Frame Revisited

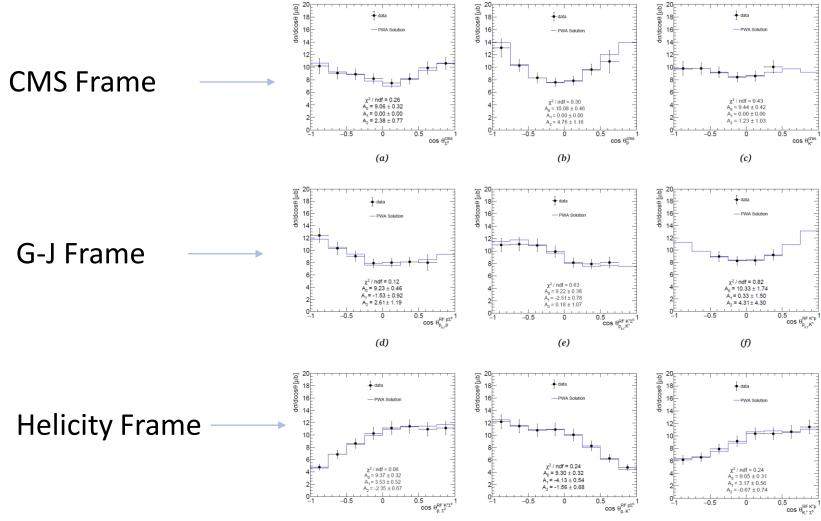
The simulation model used to correct the experimental data is the incoherent cocktail of 31% phase space, 6.7% N(1710), 4.3% N(1880), 3.0% N(1895) and 55% Δ (1900)

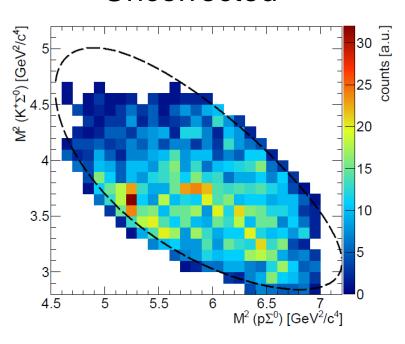
Motivation:

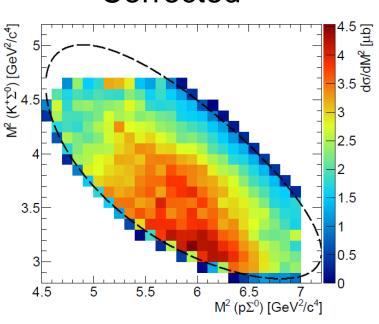
- PWA is needed for better description of experimental distributions
- Tool used is the Bonn-Gatchina PWA framework
- Works on an event-by-event basis
- PWA is first applied to $pp \rightarrow pK^+\Lambda$ (mass window 1.090 < $MM(pK^+)[GeV/c^2]$ < 1.150)
- Solution No. 8/1 from * including N(1650), N(1710), N(1720) and N(1900)
- The obtained solution is applied to the $pp \to pK^+\Lambda$ 4π phase space simulation and processed through the full simulation and analysis chain.
- An estimate of $pp \to pK^+\Lambda$ within the signal region is 292 events
- Those events are subtracted

PWA applied to $p + p \rightarrow \Sigma^0 + K^+ + p$

Best Solution


Solution	Initial State	non-resonant contributions	resonant contributions	\mathcal{L}
	$^{1}S_{0}$, $^{1}D_{2}$		$N^*(1710) \approx 17.40 \%$	
	$^{3}P_{0}$, $^{3}P_{1}$		$N^*(1900) \approx 18.51 \%$	
solution 1	${}^{3}P_{2}$, ${}^{3}F_{2}$	61.77 %	$\Delta^*(1900) \approx 02.31 \%$	-333.65
			$N^*(1710) \approx 22.25 \%$	
			$N^*(1900) \approx 09.82 \%$	
solution 2	${}^{1}S_{0}, {}^{1}D_{2}$	25.79 %	$\Delta^*(1900) \approx 42.15 \%$	-184.40
	1 1		$N^*(1710) \approx 21.40 \%$	
	${}^{1}S_{0}, {}^{1}D_{2}$		$N^*(1895) \approx 16.17 \%$	
	$^{3}P_{0}$, $^{3}P_{1}$		$N^*(1900) \approx 15.88 \%$	
solution 3	$^{3}P_{2}$	45.06 %	$\Delta^*(1900) \approx 01.49 \%$	-181.80
	${}^{1}S_{0}, {}^{1}D_{2}$			
	${}^{3}P_{0}, {}^{3}P_{1}$		$N^*(1710) \approx 26.8 \%$	
solution 4	$^{3}P_{2}$, $^{3}F_{2}$	33.10 %	$N^*(1880) \approx 40.1 \%$	-151.34
	_		$N^*(1710) \approx 78.55 \%$	
solution 5	$^{1}S_{0}$	16.75 %	$\Delta^*(1900) \approx 04.62 \%$	-122.71

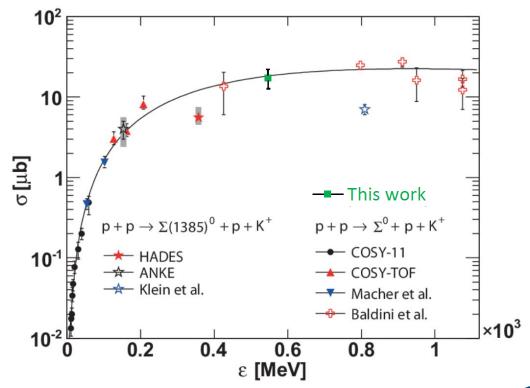




The Dalitz Plot

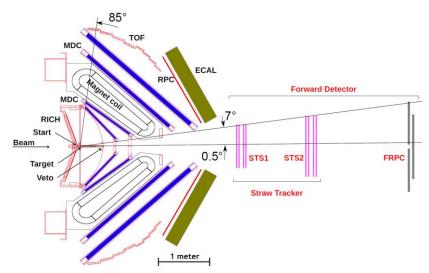
Uncorrected

Corrected


Total Production Cross Section

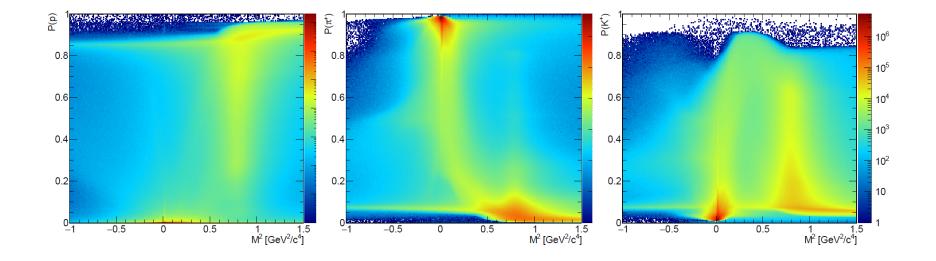
The cross section is obtained by integrating the yield for different differential distributions

$$\sigma(pK^+\Sigma^0)[\mu b] = 18.74 \pm 1.01(stat) \pm 1.71(syst)$$

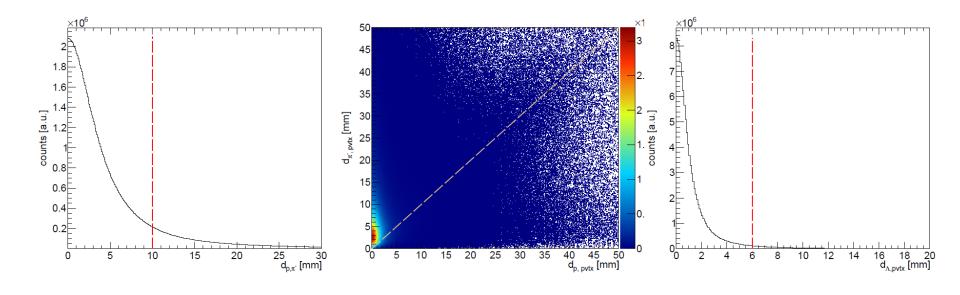

Summary

- An Investigation of the Σ^0 production mechanism in p+p collisions
- Data supports pion exchange mechanism
- The Σ^0 hyperon is produced by resonant and non-resonant reactions
- Due to limited statistics, there is a significant uncertainty to the relative contributions
- Resonances with mass around 1.710 GeV/c² and 1.900 GeV/c² are preferred by the PWA fit.

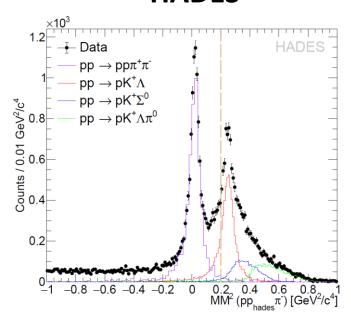
• A first step towards the measurement of the radiative decays of excited hyperons $Y^* \to \Lambda \gamma \text{ (Feb 2022)}$

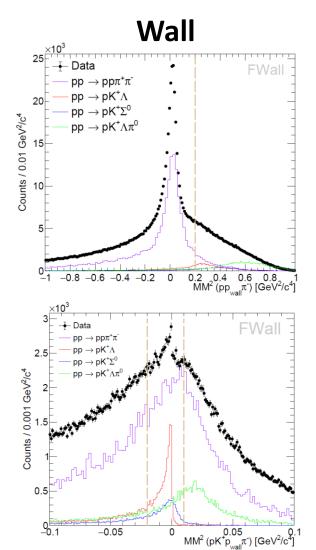

THANK YOU QUESTIONS?

PID Algorithm Performance on data:



Lambda Toplogical Cuts Distributions:




Missing Mass Distributions:

HADES

-0.05