# Generalized Distribution Amplitudes Studies with the Channel $p\overline{p} \rightarrow \gamma \gamma$

#### Faiza Khalid

Justus Liebig University Giessen





### Introduction

$$p \overline{p} o \gamma M$$
 at large Mandelstam variables

process amplitudes factorizes:



# **Theoretical Predictions**

♦P.Kroll, A. Schafer, The process  $p\overline{p} → γπ^0$  within the handbag approach, The European Physical Journal A 26, 89-98 (2005)

Measurements of cross-section with the E760 experiment at Fermilab

Absolute cross-sections so far only available for:

$$p\overline{p} \to \gamma \gamma \qquad p\overline{p} \to \pi^0 \gamma \qquad p\overline{p} \to \pi^0 \pi^0$$

#### Monte Carlo Simulation

#### **Analysis Framework**

PANDARoot v-Oct19, FairSoft v-jun19p1, FairRoot v-18.2.0

#### **Event Generation**

- Signal  $p\overline{p} o \gamma \gamma$  and background  $p\overline{p} o \pi^0 \pi^0$  and  $p\overline{p} o \pi^0 \gamma$
- 1M signal and 1M background events simulated at beam momenta of 2.5, 5 and 10 GeV
- PHSP model was used for all event generations
- PHOTOS turned off for simplicity

### **Event Selection**

#### **Gamma gamma reconstruction**

- Two gammas combined to form initial  $\bar{p}p$  system

#### **Events selection**

- Standard PID
- 4-Constraint fit applied to the reconstructed initial system
  - 4C Fit (RhoKinFitter) prob>0.01

#### October 26, 2021

#### Acceptance Studies for $p\overline{p} \rightarrow \gamma \gamma$



#### October 26, 2021

**PANDA** Collaboration Meeting



# **Determining Count Rate Estimate**

- Obtain cross-section and scaling factor from theoretical prediction
- Acceptance  $=\frac{N^{rec}}{N^{gen}}$
- Cross section<sub>scaled</sub> = cross section<sub>theor.</sub> \* scaling factor
- Count rate = Cross section<sub>scaled</sub> \* Acceptance \* Bin Size
  - \* Integrated Luminosity





# **Cross-sections** for $p \bar{p} \rightarrow \gamma \gamma$



Cross-section for  $p\overline{p} \rightarrow \gamma \gamma$ is two order of magnitude smaller than for  $p\overline{p} \rightarrow \pi^0 \gamma$ 

Estimate the background correctly

#### This is what we used so far from the PANDA physics book.

#### Cross-sections from E760 Data

- T. A. Armstrong, Two-body neutral final states produced in antiprotonproton annihilations at 2.911  $\leq \sqrt{s} \leq$  3.686 GeV
- Integrated the angular range for a fixed  $\sqrt{s}$  to get the partially integrated cross section in the cos( $\theta$ ) range which is available for all energies.
- If only positive cos(θ) are available, symmetry is assumed in the negative side.
- Partially integrated cross section was plotted vs  $\sqrt{s}$  and fits were applied.
- Error estimate was also determined.

**Cross-sections from E760 Data** 





















### **Count Rate**





p>0.01

p>0.1

p>0.3

p>0.7

10<sup>1?</sup>

CountRate for L=2 fb<sup>-1</sup> 10<sup>11</sup> 10<sup>11</sup> 10<sup>10</sup> 10<sup>10</sup> 10<sup>10</sup> 10<sup>13</sup> 10<sup>12</sup> 10<sup>11</sup> 10<sup>10</sup>

10<sup>8</sup>

10<sup>7</sup>

10<sup>6</sup>

10<sup>5</sup>

10<sup>4</sup>

10<sup>3</sup>

CountRate for L=2 fb<sup>-1</sup>  $^{10}$  CountRate for L=2 fb<sup>-1</sup> CountRate for L=2 fb<sup>-1</sup>  $^{10}$  CountRate for L=2 fb<sup>-1</sup>  $^{10}$  CountRate for L=2 fb<sup>-1</sup> CountRate for L=2 fb<sup>-1</sup>  $^{10}$  CountRate for L=2 fb<sup>-1</sup> CountRate

10<sup>10</sup>

10<sup>8</sup>

10<sup>7</sup>

10<sup>6</sup>

10<sup>5</sup>

10<sup>4</sup>

10<sup>3</sup>

-1

-0.8

-0.6

-0.4

10<sup>13</sup>

-1

-0.8

-0.6

-0.4

# Count Rate $p \overline{p} \rightarrow \pi^{0} \gamma$ $p \overline{p} \rightarrow \pi^{0} \pi^{0}$





0.6

0.4

0.6

0.8

 $\cos(\theta)$ 

0.8  $\cos(\theta)$  14



# Count Rate























## **Count Rate**





p>0.01

p>0.1

p>0.3

p>0.7

P<sub>beam</sub>= 10 GeV

## **Background to Signal Ratio**









# Suppressing the pion background in $p\overline{p} \rightarrow \gamma \gamma$ Channel

#### **Background Suppression I: Background to Signal Ratio**

cuts on angle>178° and  $p\overline{p}$  invariant mass ± 3 $\sigma$ 



4C kinematic fit already includes this cut and hence, the cuts applied have no additional effect.

**Before cut** 

After cut

p<sub>beam</sub>= 2.5 GeV

#### **Background Suppression II**

T. A. Armstrong, Two-body neutral final states produced in antiprotonproton annihilations at 2.911  $\leq \sqrt{s} \leq$  3.686 GeV

- > All calorimeter clusters with energies greater than 50MeV
- Exactly two clusters required to have energies greater than 100MeV
- For cluster pairs, no invariant mass should fall between 80 and 200 MeV/c<sup>2</sup>
- 4C kinematic fit is applied and events with confidence level less than 10% are rejected.



## **Background to Signal Ratio**

Before cutAfter cut

p<sub>beam</sub>= 2.5 GeV







## Summary

- Exclusive event selection with 4C kinematic fit was performed
- Acceptance in  $cos(\theta)$  has been checked
- Acceptance corrections were done
- Simulations have been performed at  $\sqrt{s} = 2.6 \ GeV$  $p_{beam} = 2.5 \ GeV/c$   $\sqrt{s} = 3.4 \ GeV$   $\sqrt{s} = 4.5 \ GeV$   $p_{beam} = 10 \ GeV/c$
- Integrated cross-sections from E760 data were re-evaluated to better estimate the extrapolation to higher momenta and its uncertainty.
- The cos(θ) dependence of the cross-section has been implemented and a reconstruction study has been performed
- Count rate estimates and background to signal ratio was determined for the decay channel  $\bar{p}p \rightarrow \gamma \gamma$  for beam momentum of 2.5, 5 and 10 GeV/c
- Background to signal ratio was determined for the decay channel  $\bar{p}p \rightarrow \gamma\gamma$  by suppressing background at different beam momenta.
- Refine cuts to further reduce background and increase signal efficiency in progress
- Continuation of study at 15 GeV/c beam momentum.

#### Thank You For Your Attention!





$$A = \frac{N_{rec}}{N_{gen}}$$

 $A_{corr} = \frac{N_{rec}}{A}$ 

#### **PANDA** Collaboration Meeting

