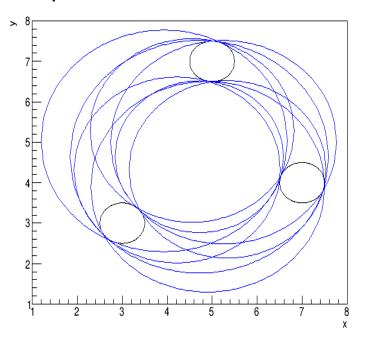
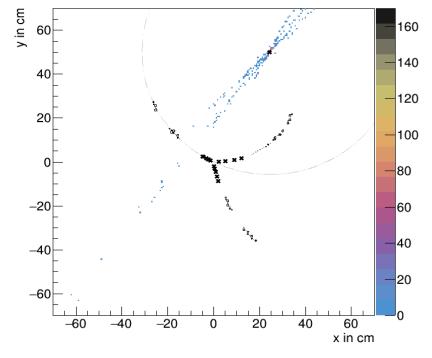
APOLLONIUS TRIPLET TRACK FINDER A TRACK FINDER FOR SECONDARIES

26.10.2021 I ANNA ALICKE | PANDA COLLABORATION MEETING




MOTIVATION

- Interesting hyperon decays often lead to secondary particles (e.g. Λ-decays)
- HoughTrackFinder could be extended to secondaries

Apollonius is not restricted to IP

MOTIVATION

- Interesting hyperon decays often lead to secondary particles (e.g. Λ-decays)
- HoughTrackFinder could be extended to secondaries

- Huge combinatorics: increase from $\binom{n}{2}$ to $\binom{n}{3}$
- 3D-Hough space is needed for circle parameters (x, y, r)

- → Slow due to high combinatorics
- → Slow because of 3D-Maximum finding
- → High memory consumption due to sufficient high resolution in 3D-Hough space

Solvable by GPU

Strong bottleneck to use the GPU efficiently

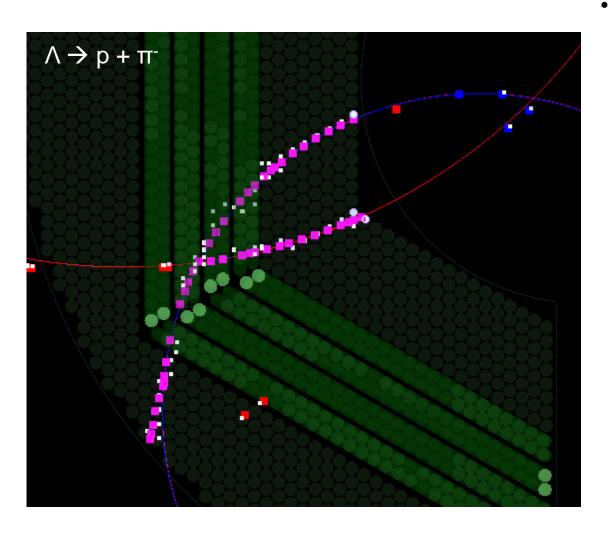
MOTIVATION

- Interesting hyperon decays often lead to secondary particles (e.g. Λ-decays)
- HoughTrackFinder could be extended to secondaries

- Huge combinatorics: increase from $\binom{n}{2}$ to $\binom{n}{3}$
- 3D-Hough space is needed for circle parameters (x, y, r)

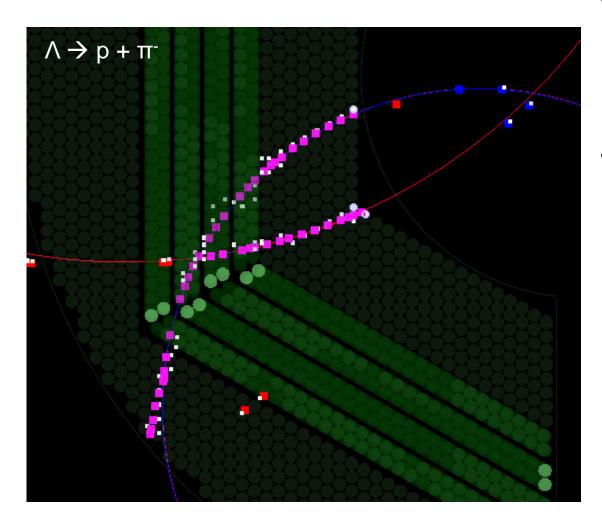
→ Slow due to high combinatorics

→ Slow because of 3D-Maximum finding

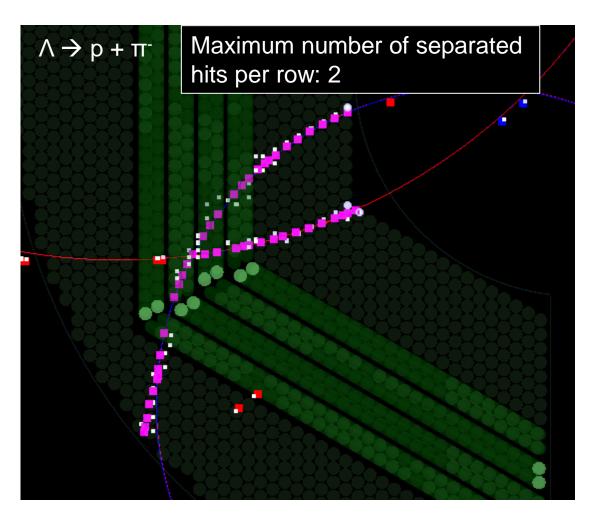

→ High memory consumption due to sufficient high resolution in 3D-Hough space Solvable by GPU

Strong bottleneck to use the GPU efficiently

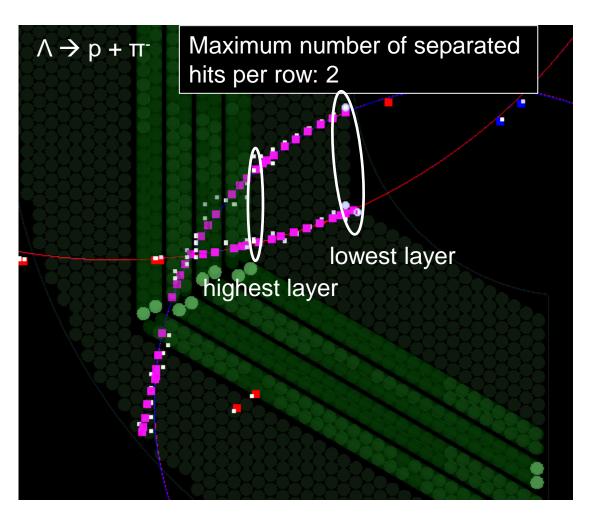
→ Can we find another idea to use the Apollonius calculation more efficiently?



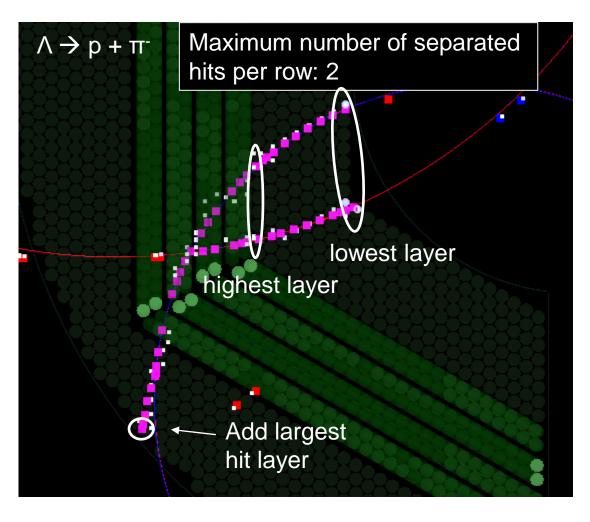
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)



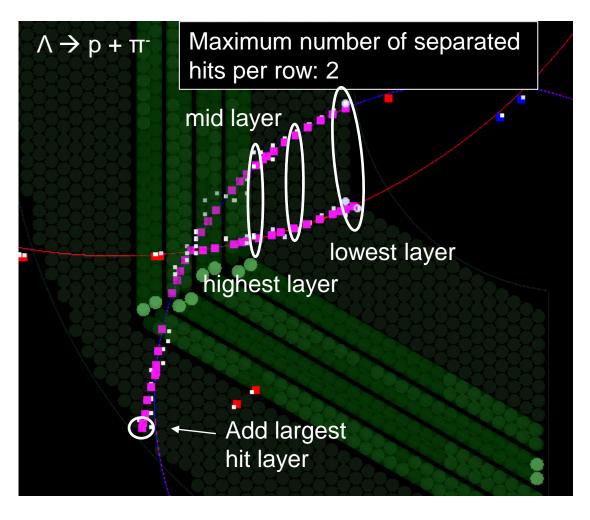
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop



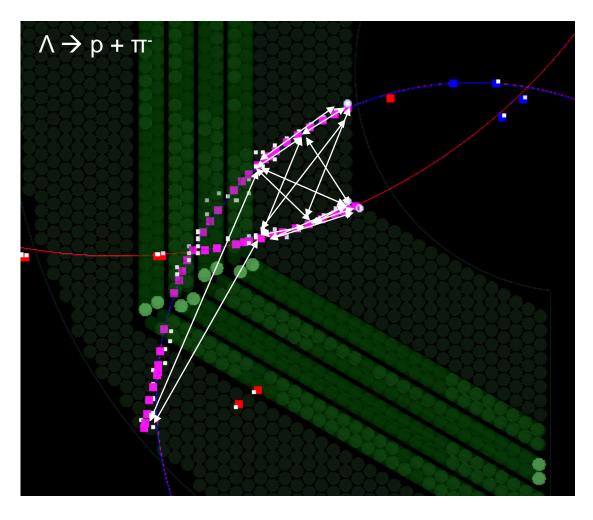
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
 - Cellular Automaton / Phi Selector to find ranges of connected STT hits
 - Analyse STT hits by separated hits per row



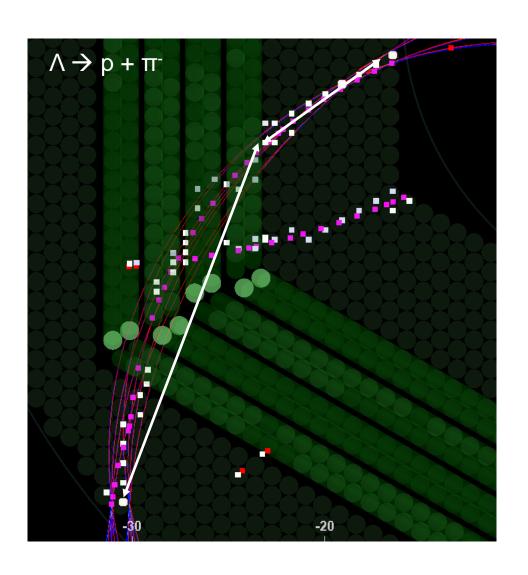
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
 - Cellular Automaton / Phi Selector to find ranges of connected STT hits
 - Analyse STT hits by separated hits per row
 - Select all hits from "inner", "outer" and "mid" row



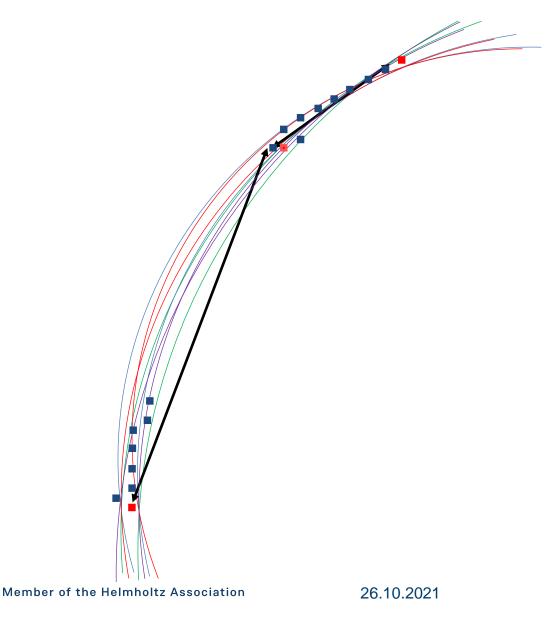
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
 - Cellular Automaton / Phi Selector to find ranges of connected STT hits
 - Analyse STT hits by separated hits per row
 - Select all hits from "inner", "outer" and "mid" row



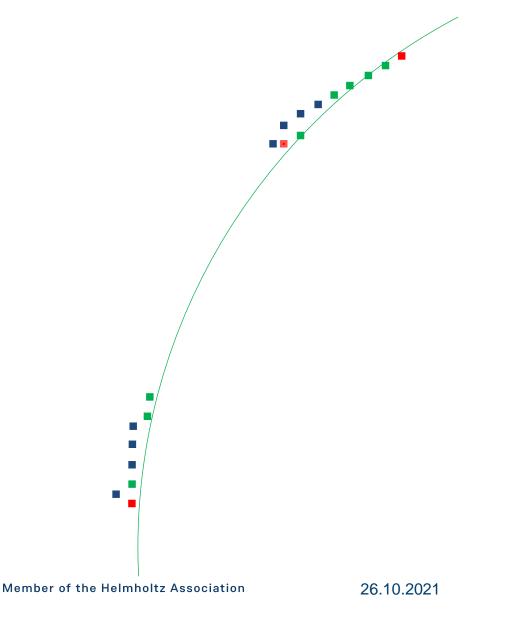
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
 - Cellular Automaton / Phi Selector to find ranges of connected STT hits
 - Analyse STT hits by separated hits per row
 - Select all hits from "inner", "outer" and "mid" row



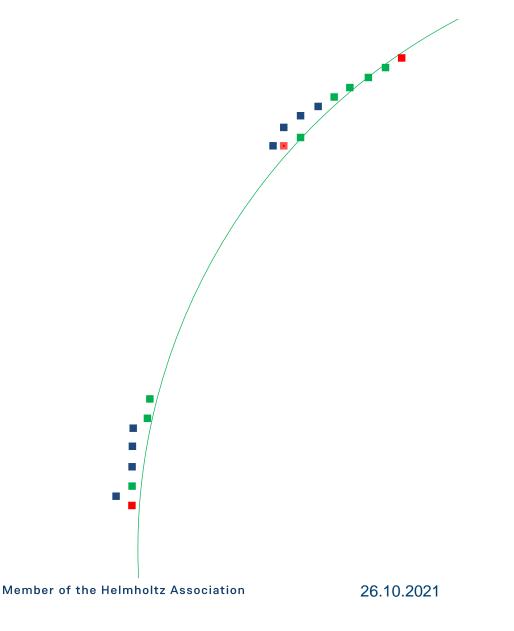
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group



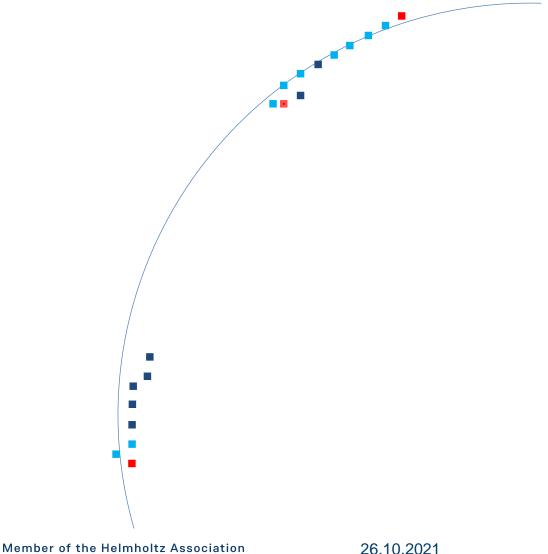
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
 - Calculate 8 Apollonius circles



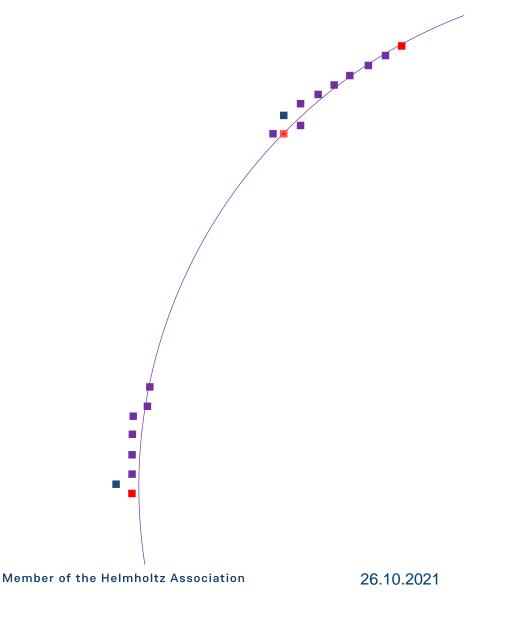
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
 - Calculate 8 Apollonius circles
 - Assign STT hits to circles



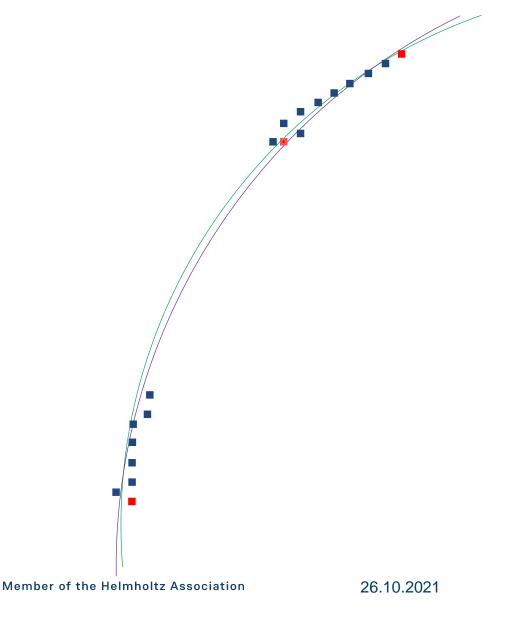
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
 - Calculate 8 Apollonius circles
 - Assign STT hits to circles



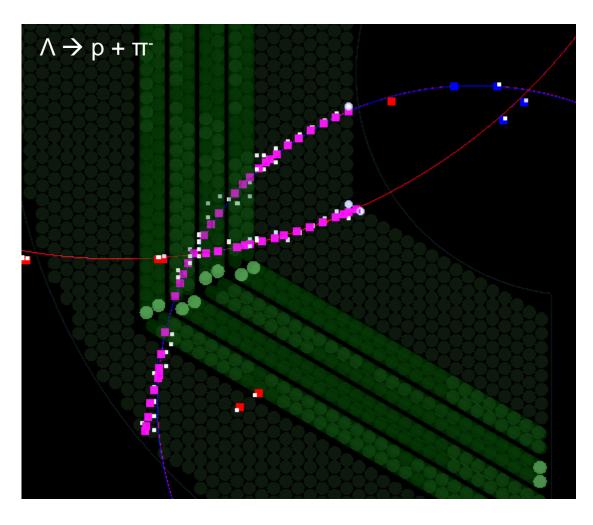
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
- → How to decide which is the proper circle?
 - Continuity check



- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
- → How to decide which is the proper circle?
 - Continuity check



- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
- → How to decide which is the proper circle?
 - Continuity check



- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
- → How to decide which is the proper circle?
 - Continuity check
 - Number of hits in track
 - Quadratic distance of hits to circle

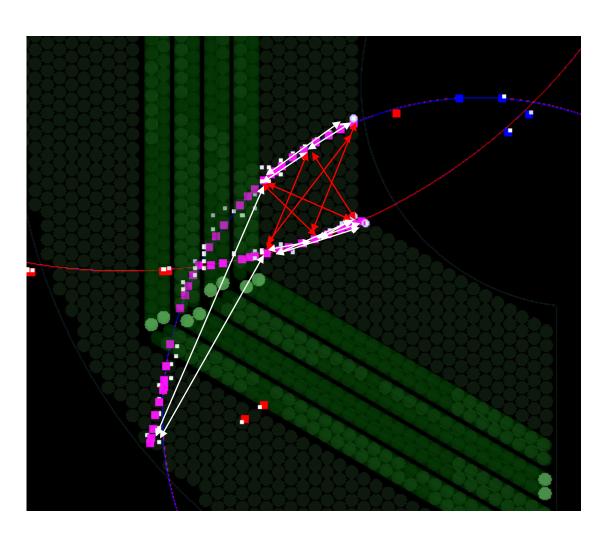
- Basic idea
 - Select three STT hits
 - Calculate Apollonius circles
 - Add other STT hits which are close to circles
 - Select best solution(s)
- First Step "Select three STT hits" already most important step:
 - Combine all STT hits are too many combinations to be fast
 → Selection has to be done
 - If selection is too tight efficiency will drop
- → How to do the selection?
- Create triplet from one hit out of each group
- → How to decide which is the proper circle?
 - Continuity check
 - Number of hits in track
 - Quadratic distance of hits to circle
 - → Find good cut criterion is challenging

FIRST RESULTS

 $1000 \, \Lambda \overline{\Lambda}$ - events at 3 GeV/c

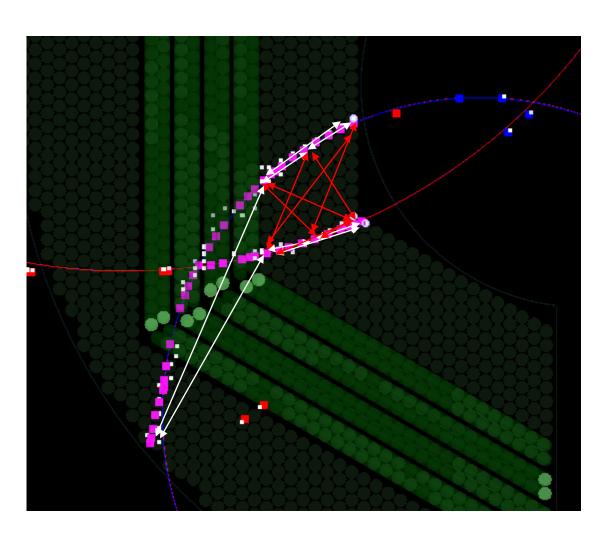
	Efficiency			Runtime	Ghosts	Clones	
	Λ	P	π^-	$\overline{\Lambda}$			
Triplet Track Finder	83.7 % (108 / 129)	95.6 % (326 / 341)	85.3 % (466 / 546)	100 % (15 / 15)	581.5 s	43.1 %	161.9 %

FIRST RESULTS

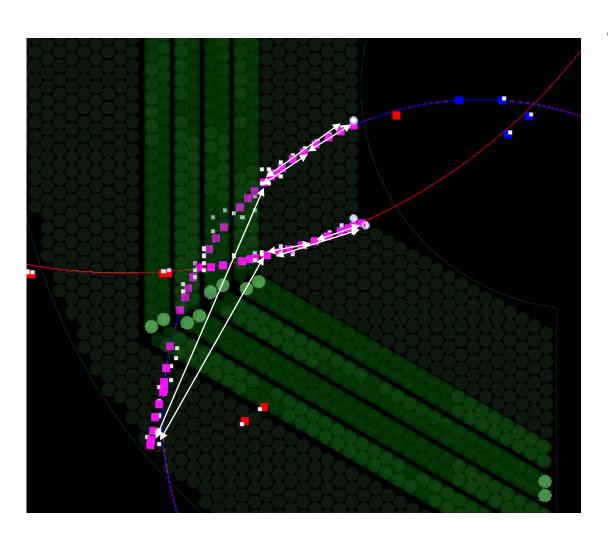

 $1000 \, \Lambda \overline{\Lambda}$ - events at 3 GeV/c

	Efficiency			Runtime	Ghosts	Clones	
	Λ	P	π^-	$\overline{\Lambda}$			
Triplet Track Finder	83.7 % (108 / 129)	95.6 % (326 / 341)	85.3 % (466 / 546)	100 % (15 / 15)	581.5 s	43.1 %	161.9 %

Reduce possible combinations



- Use CA Tracklet information
 - If first-mid or mid-last in one CA Tracklet avoid all other possibilities



- Use CA Tracklet information
 - If first-mid or mid-last in one CA Tracklet avoid all other possibilities
 - If several hits of all first, mid or last hits are in one CA tracklet use only one of the

- Use CA Tracklet information
 - If first-mid or mid-last in one CA Tracklet avoid all other possibilities
 - If several hits of all first, mid or last hits are in one CA tracklet use only one of the
 - Example:
 - → Reduction from 18 to 4 combinations

FINAL RESULTS

 $1000 \, \Lambda \overline{\Lambda}$ - events at 3 GeV/c

	Efficiency				Runtime	Ghosts	Clones
	Λ	P	π^-	$\overline{\Lambda}$			
Triplet Track Finder	83.7 % (108 / 129)	95.6 % (326 / 341)	85.3 % (466 / 546)	100 % (15 / 15)	581.5 s	43.1 %	161.9 %
With reduction	80.6 % (104 / 129)	94.4 % (322 / 341)	83.3 % (455 / 546)	100 % (15 / 15)	166.7 s	25.8 %	99.2 %

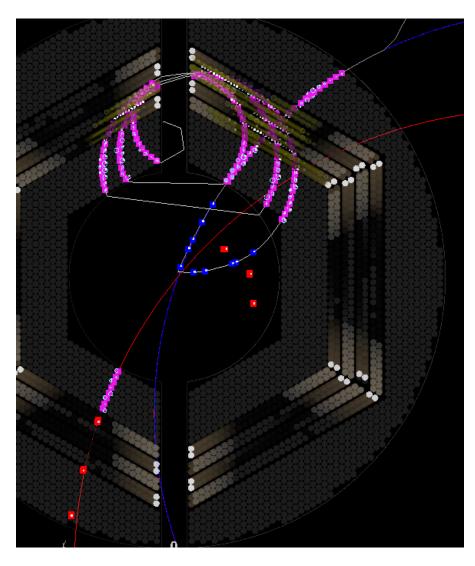
FINAL RESULTS

 $1000 \, \Lambda \overline{\Lambda}$ - events at 3 GeV/c

	Efficiency				Runtime	Ghosts	Clones
	Λ	P	π^-	$\overline{\Lambda}$			
Triplet Track Finder	83.7 % (108 / 129)	95.6 % (326 / 341)	85.3 % (466 / 546)	100 % (15 / 15)	581.5 s	43.1 %	161.9 %
With reduction	80.6 % (104 / 129)	94.4 % (322 / 341)	83.3 % (455 / 546)	100 % (15 / 15)	166.7 s	25.8 %	99.2 %
							\

Caused by curling tracks

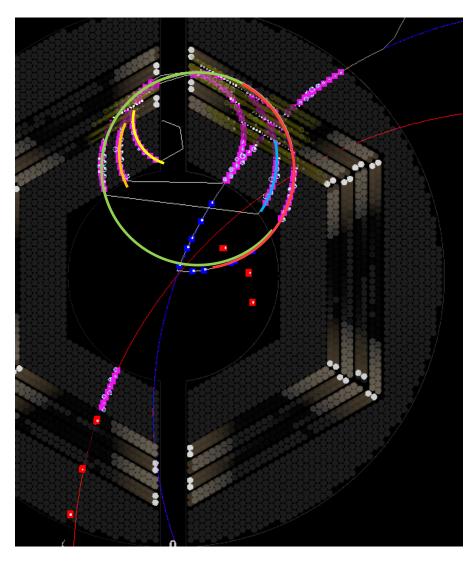
FINAL RESULTS

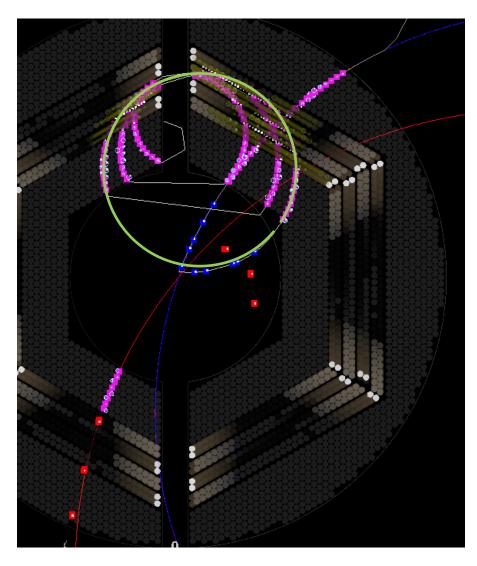


 $1000 \, \Lambda \overline{\Lambda}$ - events at 3 GeV/c

	Efficiency			Runtime	Ghosts	Clones	
	Λ	P	π^-	$\overline{\Lambda}$			
Triplet Track Finder	83.7 % (108 / 129)	95.6 % (326 / 341)	85.3 % (466 / 546)	100 % (15 / 15)	581.5 s	43.1 %	161.9 %
With reduction	80.6 % (104 / 129)	94.4 % (322 / 341)	83.3 % (455 / 546)	100 % (15 / 15)	166.7 s	25.8 %	99.2 %
Without curling tracks	95.7 % (22 / 23)	96.9 % (249 / 257)	89.1 % (33 / 37)	100 % (9 / 9)	55.4 s	3.2 %	7.2 %


- → Curling tracks essential for high Lambda efficiency
- → Modification of algorithm necessary to deal with curling tracks


- Curling tracks are found too often or create too many possible combinations
 - → high ghost and clone rate


- Curling tracks are found too often or create too many possible combinations
 - → high ghost and clone rate
- Divide all created subtracks (e.g. Apollonius Triplet Finder without skewed or CA)

- Curling tracks are found too often or create too many possible combinations
 - → high ghost and clone rate
- Divide all created subtracks (e.g. Apollonius Triplet Finder without skewed or CA)
- Merge if possible: green and red are nearly identical

- Curling tracks are found too often or create too many possible combinations
 - → high ghost and clone rate
- Divide all created subtracks (e.g. Apollonius Triplet Finder without skewed or CA)
- Merge if possible: green and red are nearly identical
- Remove all circles which are inside the found circle

SUMMARY

- New track finder for secondary particles:
 - Finds 80.6% of all reconstructible Λ particles (1000 $\Lambda \overline{\Lambda}$ events at 3 GeV/c)
 - Ghost and Clone ratio high due to curling tracks
 - Curling track reconstruction is under development
- ApolloniusTripletFinder could also be used for primaries?

COMPARISON TO BARREL TRACK FINDER

1000 FTF - events at 7 GeV/c

	Effic	ciency	Runtime	Ghosts	Clones
	primaries	secondaries			
Triplet Track Finder	81.6 %	60.3 %	581.5 s	40.3 %	90.4 %
With reduction	80.6 %	57.8 %	166.7 s	28.4 %	64.2 %
Barrel Track Finder	83.7 %	31.2 %	17.5 s	20.7 %	20.7 %

a bit worse significantly better

Further development for curling tracks

SUMMARY

- New track finder for secondary particles:
 - Finds 80.6% of all reconstructible Λ particles (1000 $\Lambda \overline{\Lambda}$ events at 3 GeV/c)
 - Ghost and Clone ratio high due to curling tracks
 - Curling track reconstruction is under development
- ApolloniusTripletFinder could also be used for primaries
 - Efficiency for primaries is similar
 - For secondaries is much better
 - Runtime, ghosts and clones under development

THANK YOU VERY MUCH FOR YOUR ATTENTION!

