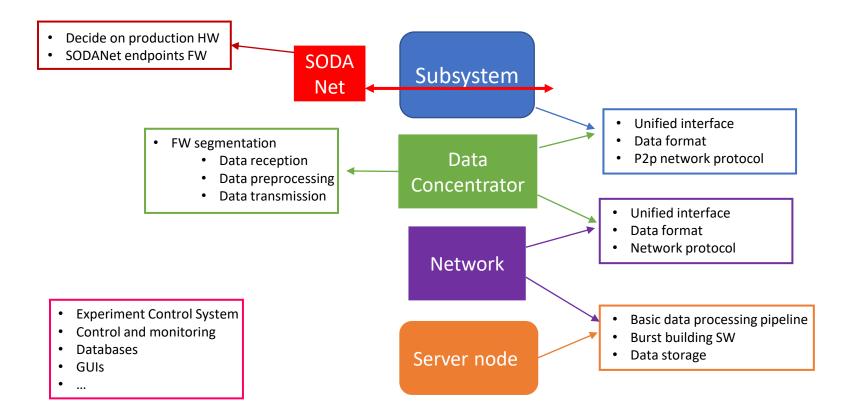
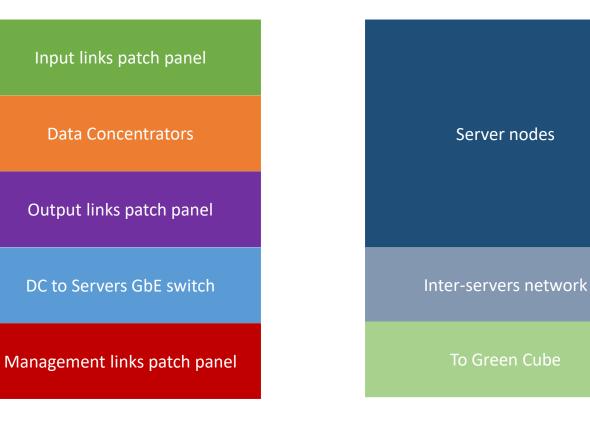


Hardware Acceleration LAB


PANDA FEE/DAQ Workshop 2021 Summary


Towards DAQ-0

System composition

Subsystems Overview

FT				
PASTTREC (352)	TRB5SC (88)	Crate Master (10)	DC (1-?)	
STT				
PASTTREC (270)	TRB5SC (68)	Crate Master (8)	DC (1-?)	
MVD				
TOAST ()	MDC (296)		DC (5-?)	
Endcap Disc DIRC				
TOFPET2	RDB (96)		DC (2-?)	
Barrel DIRC				
DIRICH	TRB3/TRB5SC		DC (?)	
EMC				
SADC	Crate Controller (41)		DC (1-?)	
HDA	LVDS DC (40)		DC (1-?)	
Lumi				
MuPIX	LVDS DC ()		DC (?)	

• ATCA – AMC platform

rbପପ⊧

- 60x bidirectional optical links (FireFly)
- Backplane I/O for management and board-board communication
- Processing unit:
 - Xilinx Kintex: FPGA-DC
 - Regular FPGA resources
 - Xilinx Zynq MPSoC: SoC-DC
 - Regular FPGA resources
 - Quad-core ARM Cortex A53
 - Dual-core ARM Cortex R5F
 - Mali 400MP2 GPU

PLL

LMK04610

8 LVDS

MMC

ATMega328P

<u>Gb/s</u>

× 14

60

FireFly

ΤХ

FireFly

TX

FireFly

TX

FireFly

ΤХ

FireFly

ТΧ

+1.8V 2.2A

+2.5V 2.4A

+3.3V 3.5A

LTM4644

FireFly

RX

FireFly 12

RX

FireFly 12

RX

FireFly

RX

FireFly

RX

+0.85V 30A

2*LTM4620

4-phase

12

12

12

+0.90V 12A

LTM4620

2-phase

FPGA

XCKU15P-

FFVA1760

+1.20V 20A

LTM4620

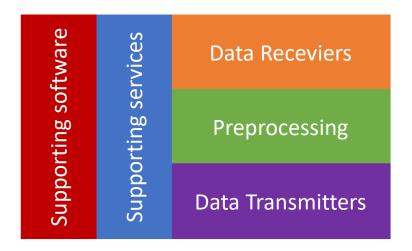
2-phase

M. Caselle

S

0

J


 6×14

AMC Bac

DC Firmware

Particular DC firmware has to be tailored to a given subsystem:

- In/Out link configurations (resource balance)
- Preprocessing algorithms
- Supporting services

Data receivers region:

- Logic common to all DCs (configurable num. of links)
- Common link type and protocol
- Unified interface to Preprocessing region

Preprocessing region:

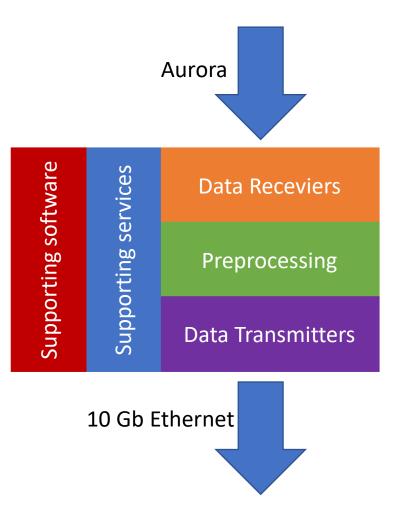
- Fixed, unified data in and out interfaces
- Region available to Subsystem devs.

Data transmitters region:

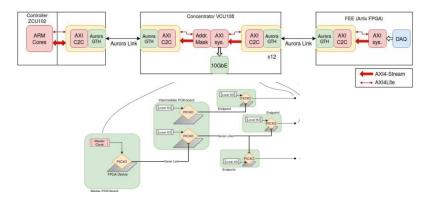
- Logic common to all DCs (configurable num. of links)
- Unified interface to Preprocessing region
- Commercial network interface

Supporting services:

- Control and monitoring
- SODANet
- ATCA management
- ...


Supporting software:

- Board management
- Data QA
- ...


DC Protocols

Data Receivers:

- All Subsys. end up with Xilinx FPGAs
- Wide range of link speeds
- Aurora IPs are well tested and easy to use
- Lightweigth
- Can transport AXI transactions
- Can be synchronous

M. Bakalarek talk

Data Transmitters:

- Common networking standard
- Easy to set up a simple UDP blaster for basic operation and evaluation of the readout chains

Data Formats

DC Output Data-format

- DC can start transmitting FEE data once it is available (without waiting till the end of a super-burst)
- If no data are available -

DC sends an empty package at the end of the Super-burst

Data-package

31 16	15 0			
last-packet flag; packet number	data size in bytes			
Not used (same as HADES)	Not used (same as HADES)			
Status and error	System ID			
Super-burst number				
Data				

All FEE modules should issue "empty packet" in case no data is measured – assures readout integrity

M. Kavatsyuk, DAQ Workshop 2018

Data formats

Data format for transport between FEE/Data Concentrators and CN layer

- Proposal: define universal packet format, independent of detector subsystem
 - Advantage: we can **use the same set of IP cores** to handle data streams independent of detector and DAQ layer
 - Data is streamed and organised in packets
 - Push architecture, but with support for back pressure

• Data Origin Definitions:

- "detector": Panda Subsystem ID (EMC, STT, MVD etc.)
 - reserve one byte for unique detector definition
- "module" : section ID of a detector (EMC Forward endcap, STT stereo layer, MVD pixels etc.)
 - reserve one byte for unique module definition
- "location": unique identifier for the geographical location of a hit within a module (could be STT wire number, MVD pixel ID etc.
 - reserve 4 bytes (need addressing space for MVD)

M. Kavatsyuk, DAQ Workshop 2018

Data formats

Universal Packet Format (UPF)

- Each packet contains a **packet header** with the following information (distributed in part by SODANET to FEE and/or set by slow control in FEE for local runs):
 - ID for "experiment" number (should be unique over the lifetime of Panda) (2 Bytes ?) (set by run control)
 - Run number (is reset at the start of a new experiment) 2 Bytes (set by run control)
 - Run type (physics, calibration, test/debug, local run, etc.) | Byte (set by run control)
 - Event selection identifier or has code pointing to data base(4 bytes ?)
 - Superburst ID: 4 Byte (to be distributed by SODANET) (use also as last packet flag)
 - Payload size (in bytes): 3 Bytes, payload item size in bytes (1 byte) (detector specific)
 - Payload header : Number of items in payload
 - Payload items:
 - Time stamp
 - Data Origin
 - Data value(s) (detector-specific)
 - Payload trailer: repeat payload size, add checksum (CRC)
- Packet trailer
 - repeat payload size (for redundancy, debugging and recovery M. Kavatsyuk, DAQ Workshop 2018

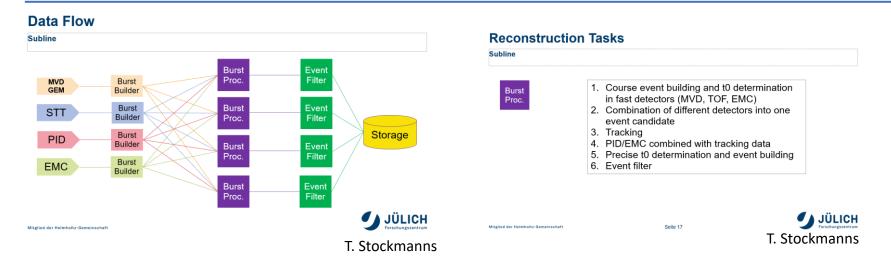
CRC (packet checksum)

DC to Servers network

Maintain subsystems isolation

- Subsystem -> DC -> dedicated server
- Server instances optimized for particular subsystem data characteristics

o a nìd


- Superburst/burst building done manually
- Communication between nodes required
- Distributed processing

Superburst round-robin

- Complete superburst -> particular server
- Superburst building done by network "for free"
- No communication between nodes required
- Possible bottlenecks (all DCs -> one server at a time)

1. Subsystem independet processing

- Coarse event building / clustering
- Calibrations, mappings, ...
- FT, STT tracking with coarse TO
- PID on EMC

2. Burst building

- Combination of tracks and PID
- Precise T0 determination
- Complete event building

3. Event filter

- Software trigger
- Event tagging
- Event rejection

1. Subsystem independent processing

- Subsystem independent
- Processing of time-ordered stream
- Course event building clustering
- Calibrations, mappings, ...
- Clustering efficient on FPGA
 - Preprocessing region on DC
 - FPGA accelerator in server node
 - Direct network connection
- Coarse tracking on GPU
 - Intermediate storage host DDR, CPU interaction required
 - RoCE from Data Concentrators
- Product subevents stored in host DDRs

Subsystem independet processing

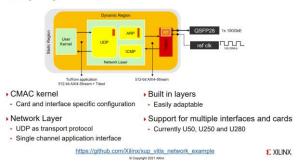
- Coarse event building / clustering
- Calibrations, mappings, ...
- FT, STT tracking with coarse T0
- PID on EMC

Burst building

1.

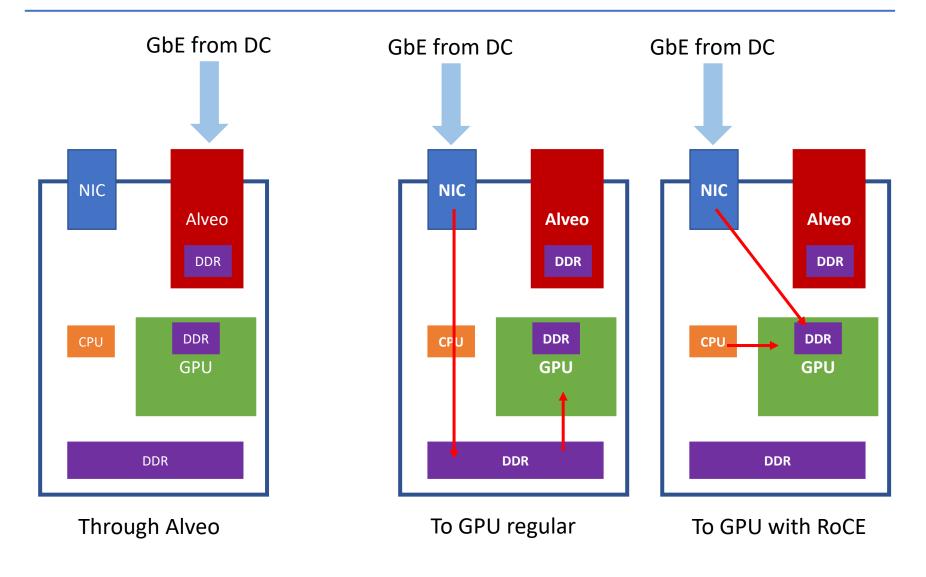
2.

3.


- Combination of tracks and PID
- Precise T0 determination
- Complete event building

Event filter

- Software trigger
- Event tagging
- Event rejection



VNx (XUP)

2. Burst Building

മവപ

- Combination of tracks and PID
- Precise T0 determination
- Complete event building
- Mostly CPU intensive memory scans and data macthing
- Inter-server communication required
- Fast interconnect each-each
- Burst building processes on subsystems processing nodes
- Round-robin job distribution

Subsystem independet processing

- Coarse event building / clustering
- Calibrations, mappings, ...
- FT, STT tracking with coarse T0
- PID on EMC

Burst building

1.

2.

3.

- Combination of tracks and PID
- Precise T0 determination
- Complete event building

Event filter

- Software trigger
- Event tagging
- Event rejection

3. Event filter

- Software trigger for event tagging or filtering
- Promissing implementation as a set of Neural Networks (P. Jiang)
- Very fast inference ~1.5M candidates per second on a single RTX3090
- Transmission to Green Cube for storage or further processing

Subsystem independet processing

- Coarse event building / clustering
- Calibrations, mappings, ...
- FT, STT tracking with coarse T0
- PID on EMC

Burst building

1.

2.

3.

- Combination of tracks and PID
- Precise T0 determination
- Complete event building

Event filter

- Software trigger
- Event tagging
- Event rejection

Towards DAQ-0

- Dummy boards with data from simulations
- Data concentrator:
 - Target DC board or any development board with Xilinx and transceivers
- Server node:
 - Any modern PC
- Development work groups:
 - Data Concentrator firmware
 - Software processing pipeline

Summary

- Basic concepts and elements are defined, require to be more and more detailed
- All input is appreciated:
 - Updates on subsystems data rates
 - Updates on numbers of modules and links
 - Pottential preprocessing methods/algorithm on levels: DC and Servers