

Energy Calibration of the PANDA Electromagnetic Calorimeter

Hang Qi

On behalf of IHEP/USTC group

September, 2021

Outline

- PANDA EMC-Barrel
- Energy Calibration
- Energy Leakage Correction
- Calibration with Leakage Correction
- Summary

PANDA EMC-Barrel

- Energy measurement
- Position measurement
- Shower shape measurement
- Separation of γ/e and hadrons

PWO-II crystal:

- Width ~ 2-3 cm (R_M ~ 2 cm)
- Length ~ 20 cm (X_0 ~ 1 cm)

Energy Calibration $(\pi^0 \rightarrow \gamma \gamma)$

- Detection unit uniformity
- Pre-shower and Leakage
- Light yield non-uniformity

The calibration will improve the energy resolution and correct the reconstructed energy to the true energy which can be used in physics analysis.

Energy Calibration ($\pi^0 \rightarrow \gamma \gamma$)

• Monte Carlo simulated sample of $\pi^0 o \gamma\gamma$

Energy Calibration $(\pi^0 \rightarrow \gamma \gamma)$

- The calibration algorithm can be applied to those crystals in the inner region of the calorimeter, and perfectly satisfy the requirement of PANDA experiment
- However, the calibration algorithm will suffer the energy leakage problem when applied to crystals in the edge region
- The energy leakage problem must be solved before doing calibration

- Influences of energy leakage :
 - Shower lost → energy shift
 - Statistics lost → bad resolution
 - •
- Solutions:
 - MPV shift
 - Estimate the leakages based on some features of the shower lateral development, such as the shape of the shower...

Monte Carlo simulated sample of single y

• When a coming particle hit the edge of the EMC, the energy deposited in the outer side will not be detected.

The energy deposited in the outer side (E_{Outer}) is missed for edge condition, but the ratio E_{Outer}/E_{Seed} can be obtained according to E_{Inner}/E_{Seed}

Hang Qi (USTC)

Calibration of the PANDA EMC

Hang Qi (USTC)

Calibration of the PANDA EMC

Hang Qi (USTC)

Hang Qi (USTC)

Calibration of the PANDA EMC

Hang Qi (USTC)

Hang Qi (USTC)

Calibration of the PANDA EMC

Hang Qi (USTC)

Calibration of the PANDA EMC

Hang Qi (USTC)

Summary

- A dedicated calibration algorithm is developed for the PANDA EMC, but it suffers the energy leakage problem;
- In order to improve the performance of the calibration algorithm, a solution for the energy leakage problem is presented.

Thank you!

Backup

Backup

Backup

