PANDA DIRC bar production at Lytkarino - Dubna

Two stage of the PANDA DIRC bar prototypes production:

- 10 short bars ($\mathbf{3 0 0} \mathbf{~ m m}$) from Russian fused silica «KS-4V»
- 4 long bars (900 mm) from fused silica «Spectrosil 2000». Blanks were delivered by Saint Gobain Quartz PLC (now Heraeus Quartz UK Ltd)

Polishing was made at Russian Enterprise "Lytkarino Optical Glass Plant"

Production area

Big polishing machine to treat 6 m optic ware with accuracy $\sim 1 \mathrm{~nm}$

300 mm short bars

300 mm short bars

Preliminary results (Russian)

$$
\begin{array}{r}
\mathrm{T}=0.9257 \pm 0.0001 \\
\\
\\
\text { only stat. error }
\end{array}
$$

$$
\begin{array}{r}
\mathrm{T}=0.9830 \pm \pm \begin{array}{c}
0.0002 \\
\text { only stat. error }
\end{array}
\end{array}
$$

transmittance per m (fresnel corrected): reflection coeff. (12 reflections):
$T_{\text {cor } / \mathrm{m}}=0.9915 \pm 0.0002$
$R=0.99915 \pm 0.00002$
attenuation length:
$\Lambda=117.6 \pm 2.1 \mathrm{~m}$
roughness:

$$
\sigma=21.8 \pm 0.3 \AA
$$

300 mm short bars

Radiator Quality Test Results: Lytkarino Lzos, 30 cm bar

300 mm short bars

$$
\begin{array}{rl}
\text { Miass "R1" } & \text { "R2" } \\
\delta \theta 1=5.54 & 1.23 \\
\delta \theta 2=-5.33 & -1.12 \\
\delta \theta 3=5.54 & 1.12 \\
\delta \theta 4=-5.75 & -1.23 \\
& +-0.03
\end{array}
$$

1. Results consistent with the specifications
2. Shape defect that was detected during the quality control

900 mm long bars

Fused silica bulk material quality:

Our requirement to

- optical homogeneity of the fused silica bulk material,
- homogeneity of the refractive index in the batch of the fused silica blanks,
- homogeneity of the average dispersion in the batch of the fused silica blanks,
- transmission,
- birefringency category
- bubbles, inclusions, striae etc ...
were defined during negotiation for the St. Gobain contract according with standards, high but possible critical quality performances.

900 mm long bars

Problem of mutual understanding was facilitated especially because there was kept some experience of collaboration with BaBar

4 bar blanks from Spectrosil 2000 fused silica were delivered by St. Gobain

900 mm long bars

900 mm long bars

Physical dimensions specifications:

- The dimensions for all pieces shall be identical to a tolerance of 0.5 mm absolute. In addition, in groups of two bars, the widths shall be identical to 0.05 mm with a goal of 0.025 mm , and the thickness identical to 0.25 mm with a goal of 0.025 mm .

900 mm long bars

Physical Dimensions

№	$900{ }_{-0.500}^{+0.000} \mathrm{~mm}$	$35_{-0.500}^{+0.000} \mathrm{~mm}$	$17_{-0.500}^{+0.000} \mathrm{~mm}$
1	899.5	34.8	16.7
2	899.5	34.8	16.7
3	899.6	34.8	16.7
4	899.6	34.8	16.7

900 mm long bars

Parallelism and Flatness specifications

- The sides / faces shall be parallel to 0.025 mm .
- The bar faces shall be flat to 0.1 mm max.
- The bar sides shall be flat to 0.025 mm .
- They shall be flat to 0.0025 mm over any $25 \times 25 \mathrm{~mm}^{2}$ area.

900 mm long bars

Parallelism and Flatness

№	35×900 mm	17×900 mm	17×35 mm	Newton rings for $\varnothing 30 \mathrm{~mm}$
1	0.03	0.03	0.02	$1 \sim 0.275 \mathrm{мкм}$
2	0.03	0.03	0.02	$1 \sim 0.275$ мкм
3	0.03	0.03	0.02	$1 \sim 0.275$ мкм
4	0.03	0.03	0.02	$1 \sim 0.275$ мкм

900 mm long bars

Surface quality specifications:

- The surface finish of the sides and faces shall have a surface roughness of $10 \AA r m s$ or better.
- The surface finish of the ends should have a surface roughness of $20 \AA$ rms.

900 mm long bars

Roughness measurements

- roughness of specimens-"witnesses" was measured by scanning probe microscope "NTEGRA- Prima"
- the specimens-"witnesses" - $10 \times 10 \times 7 \mathrm{~mm}^{3}$, corresponded to differend quartz bar sides and different polishing stages
- for every samples the atomic-force images of $60 \times 60 \mu \mathrm{~m}, 30 \times 30 \mu \mathrm{~m}, 10 \times 10 \mu \mathrm{~m}$ and $5 \times 5 \mu \mathrm{~m}$ were obtained.

Образец № 1 Вторая точка.

Рис. 3. 2D АСМ изображения поверхности образца №1 во второй точке.

Рис. 4. 3D АСМ изображения поверхности образца №1 во второй точке.

900 mm long bars

Surface roughness of specimen №1 in point 2

Scanned area, $\mu \mathrm{m}$	Measured surface roughness, $\mathbf{n m}$			
	$R_{\max }$	$R_{\text {mean }}$	R_{a}	R_{q}
$60 \times 60 \mathrm{mкм}$	109.435	8.820	0.492	0.839
30×30 мкм	36.916	8.912	0.432	0.583
10×10 мкм	10.544	8.240	0.361	0.469
5×5 мкм	4.084	2.828	0.268	0.338

900 mm long bars

Resulting surface roughness and finish (purity).

№	$35 \times 900 \mathrm{~mm}$, nm	$17 \times 900 \mathrm{~mm}$, nm	$17 \times 35 \mathrm{~mm}$, nm	P
1	$0.472-0.749$	$0.790-0.881$	$1.510-0.631$	V
2	$0.472-0.749$	$0.790-0.881$	$1.510-0.631$	V
3	$0.472-0.749$	$0.790-0.881$	$0.564-0.604$	V
4	$0.472-0.749$	$0.790-0.881$	$0.564-0.604$	V

900 mm long bars

Squareness

Not measured, but attributed by producer as
"ideal". Should to be investigated.

900 mm long bars

Edges

Look safficiently and sharp, but quite a few chips were damaged due to wrong manipulation when bars were taken off from the polishing table.

900 mm long bars

Surface and Edge Imperfections

Bar №1: 2 chips $0.6 \times 0.4 \times 0.1 \mathrm{~mm}$
Bar №2: 3 chips $1.8 \times 1.0 \times 0.1 \mathrm{~mm} ; 1.4 \times 0.9 \times 0.4 \mathrm{~mm}$; $1.4 \times 0.9 \times 0.4 \mathrm{~mm} ;$
Bar №3: 4 chips $3.0 \times 1.7 \times 0.3 \mathrm{~mm} ; 0.7 \times 0.5 \times 0.3 \mathrm{~mm}$; $3.6 \times 1.8 \times 0.2 \mathrm{~mm} ; 0.5 \times 0.4 \times 0.1 \mathrm{~mm}$

Bar №1: 1 chip $0.7 \times 0.4 \times 0.2 \mathrm{~mm}$

The end

