

Recent developments in Erlangen

Alexander Britting, Wolfgang Eyrich, Albert Lehmann, Fred Uhlig

supported by BMBF and GSI

panda

Overview

- Measurement of work functions of MCP-PMTs
 - Motivation
 - Setup
 - Results for BINP#73 and #82
- Behaviour of JT0158 (R10754X-06-L4) before and after CERN
- QE and signals of XP85112
- First results of lifetime measurements

Measurement of work functions:

Motivation

Adsorption of neutral gas molecules and **defects** in the photo cathode caused by ion bombardments are limitating the lifetime of the photo cathode.

• Goal: Measuring amount (and kind) of adsorped gas molecules and defects

Problems:

- Adsorption can be directly measured by diffraction of low energy electrons (LEED),
 but requires opening of the housing of the PMT
 destructionless measurement required
- Work functions are accessible by illuminating with high energy UV light and measuring the photoelectron momenta (e.g. He, ~20eV, UV photoelectron spectroscopy **UPS**). Borosilicate glasses are **intransparent** for such high energy.

But:

Changes of the electron affinity affect initial current of diodes
 shifts in the 1. derivative of the current results from adsorbing gases

(e.g. Henzler/Göpel - Oberflächenphysik des Festkörpers, Teubner Studienbücher) Sept. 6, 2011

Measurement of work functions:

Setun

- Photo cathode voltage can be varied in 10mV steps (0-20V)
- Low voltage is controlled by IEC-625 (GPIB)
- DAQ is fully automated to control voltage and measuring current

Measurement of work functions:

BINP #73 and #82

- Work function differs by 5.4eV, but need not be induced by adsorption since two different devices were investigated
- Decrease of saturation current is generated by decreased quantum efficiency
- Hopefully more information can be gathered with current lifetime measurements

What happend to the L4?

cracked corner

L4 and M16 were cracked at a corner during installation at CERN

L4	before	after CERN
width (ps)	298	859
fall (ps)	238	329
rise (ps)	454	869

L4 – Quantum Efficiency

L4 – work function and

dark current

- Saturation current has tremendously increased, despite same light flux (PiLas 20kHz, unattenuated)
- This can be explained by ionization of gas molecules
- Inflection point almost unchanged $(\Delta U = 50 \text{mV})$
- Dark current increased dramatically (~50pA to 5.3nA) and exceeded the typical photo current

85112	before	after CERN
Width (ns)	1.44	1.42
fall (ps)	703	684
rise (ns)	1.20	1.34

Quantum Efficiency 85112 - 9001223				
2 5				
∑ 25	人			
15	1			
10		1		
- - -				
5		\		
0 3003	50 400 450	500 550	600 650	700
		wavele		

Sept. 6, 2011

Lifetime measurements

Lifetime measurements of Hamamatsu JT0117 (R10754X-01-M16), JT0158 (R10754X-06-L4) and Photonis XP85112/A1-HGL – 9001223 have started at

August 23th.

- by additionally ND 0.3, to achieve single photon level => about 50% of integrated charge than M16 and 85112, but can be changed later on
- Frequency: 275 kHz
- Collected charge per day:
 - ~5.0-5.5 mC/cm² (M16, 85112)
 - 2.8 3mC/cm² (L4) Sept. 6, 2011

	85112	M16	L4
Active Channels	11 (10 + MCP-Out)	8	4
Illuminated channels	8	8	4
Unexposed channels	2	0	0
Illuminated area	50%	100%	100%
Nr. of QE measurements	2	1	1
Nr. of crosstalk suppressed channels	2	2	4
Voltage (V)	2050	3300	3300

Lifetime measurements (2)

Lifetime measurements

M16

Quantum Efficiency, Gain and relative photon detection efficiency unchanged for all MCP-PMTs

- Although just 65 mC/cm² (M16) (78 mC/cm² (85112) and 35.5 mC/cm² (L4)) lifetime already exceeds all previous models
- Int. charge of L4 is half of M16/85112, since the illumination is attenuated by an additional ND 0.3

Summary

- Difference in work function can be measured in 'diode mode'.
 Goal: Measuring correlations between work function and QE
- L4 is damaged by cracked corner, M16 seems unharmed. Impact on lifetime measurements unpredictable at the moment
- No degradation obvious at the moment after 65 mC/cm² (M16) (78 mC/cm² (85112) and 35.5 mC/cm² (L4)) after 13 days of illumination
- More details next time:
 - Magnetic field measurements of XP85112 9001223
 - Ongoing lifetime measurements