Simulation of Time-Over-Threshold with GARFIELD

Sedigheh Jowzaee
Jagiellonian University

Outline

- Setting input parameters for GARFIELD
- Signal analysis
- PID methods and their separation power
- Corrections
- Plans for future

Introduction

- GARFIELD: a computer program for the detailed simulation of two- and three-dimensional gas detectors.
- Garfield input is subdivided in sections:
- CELL
- FIELD
- MAGNETIC
- GAS
- OPTIMISE
- DRIFT
- SIGNAL

Cell \& Field

Tube radius $=0.5 \mathrm{~cm}$
Wire radius $=10 \mu \mathrm{~m}$
LAYOUT OF THE CELL

Wire voltage $=+1800 \mathrm{~V}$
$B=0$

Gas file

- Make a gas file with Magboltz 7
- $90 \% \mathrm{Ar}, 10 \% \mathrm{CO} 2$, Temperature 300 K , Pressure 2 atm
- Importance of different parameters:
- Electric-field-range
- The number of points with N-E
- The number of collisions in MONTE-CARLO integration

Gain changes with E-range setting

Gain changes with no. of steps in E-range

PANDA Collaboration Meeting, GSI, Germany, 5-9 September 2011

Gas gain \& Penning effect

- Diethorn formula
$\ln G=K_{1} \frac{V}{\ln \left(\frac{b}{a}\right)} \ln \left(\frac{V}{p a \ln \left(\frac{b}{a}\right)}\right)+K_{2} \frac{V}{\ln \left(\frac{b}{a}\right)}$
- Penning transfer rate

- In Ar-CO2 gas mixtures:
- Penning rate is about 50% doi:10.1088/1748-0221/5/05/P05002
- New version of Magboltz
- Ar cross section is updated

Signal \& Transfer Function

- Transfer Function: relation between the Laplace transform of the output and input pulse $H(s)=\frac{u_{\text {out }}(s)}{I_{\text {in }}(s)}$
- Preamplifier response:
- Shaping

$$
f(s)=\frac{n!\tau}{(1+s \tau)^{n+1}}
$$

n : number of integrations
τ : time constant of one
integration stage

- $\mathrm{n}=2, \tau=10 \mathrm{nsec}$ (peaking time $=2 * \tau=20 \mathrm{nsec}$)
- Tail cancelation $f(s)=\frac{\left(s \tau_{1}+1\right) \cdot\left(s \tau_{2}+1\right)}{\left(\frac{s\left(\tau_{1} R_{2}+\tau_{2} R_{1}\right)}{R_{1}+R_{2}}+1\right)} \quad$ Not implemented

Signal for $0.7 \mathrm{GeV} / \mathrm{c}$ pions

- Near to the detector wire

Signal for $0.7 \mathrm{GeV} / \mathrm{c}$ pions

- Far from the detector wire

Particle Identification Methods

- Time Over Threshold
- Amplitude
- Charge

Time Over Threshold

- TOT: the width of signal at the threshold level
- Time over threshold depends on
- particle's energy loss
- track distance to wire
- Have to be corrected for distance

Straw Response Before Distance Correction

$0.7 \mathrm{GeV} / \mathrm{c}$ protons, pions and kaons

Distance Correction

- Parameterization done for proton, pion and kaon for momentum range 0.3 to $1 \mathrm{GeV} / \mathrm{c}$
- Straw radius divided into 0.5 mm bins
- Average in first bin
- Removing data greater than $2 *$ average for best fitting parameterization
- 2nd order polynomial fit
- Correction factor =yfit(0)/yfit(i) for each bins
- Corrected $\mathrm{y}(\mathrm{x})=\mathrm{y}(\mathrm{x}) *$ correction value
- This corrected $y(x)$ dose not depend on the

Time over threshold vs. distance from wire
 distance form wire

Distance Corrected Data of TOT
 $0.7 \mathrm{GeV} / \mathrm{c}$ proton, pion and kaon

Distance Corrected Data of Amplitude

$0.7 \mathrm{GeV} / \mathrm{c}$ proton, pion and kaon

Distance Corrected Data of Charge
 $0.7 \mathrm{GeV} / \mathrm{c}$ proton, pion and kaon

Distance Correction to TOT

- Before

TOT of Proton, Pion and Kaon

- After

TOT of Proton, Pion and Kaon without average

PANDA Collaboration Meeting, GSI, Germany, 5-9 September 2011

Distance Correction to Amplitude

- Before

Amplitude of Proton, Pion and Kaon without average

- After

Amplitude of Proton, Pion and Kaon without average

Distance Correction to Charge

- Before

- After
charge of Proton, Pion and Kaon without average

Truncated Average Correction

- Response of 24 single straws to each track
- Distance of each track to wire simulated by uniform random distribution
- Normal Average for 24 straw layers
- Truncated Average for 24 straw layers by removing about 20% of the highest numbers

Results

$0.7 \mathrm{GeV} / \mathrm{c}$ proton, pion and kaon

- Corrected ToT

TOT of Proton, Pion and Kaon without average

TOT of Proton, Pion and Kaon with normal average

TOT of Proton, Pion and Kaon with truncated average

PANDA Collaboration Meeting, GSI, Germany, 5-9 September 2011

Results

$0.7 \mathrm{GeV} / \mathrm{c}$ proton, pion and kaon

- Corrected amplitude

Amplitude of Proton, Pion and Kaon without average

Amplitude of Proton, Pion and Kaon with normal average

Amplitude of Proton, Pion and Kaon with truncated average

PANDA Collaboration Meeting, GSI, Germany, 5-9 September 2011

Results

$0.7 \mathrm{GeV} / \mathrm{c}$ proton, pion and kaon

- Corrected charge
charge of Proton, Pion and Kaon without average

charge of Proton, Pion and Kaon with normal average

charge of Proton, Pion and Kaon with truncated average

PANDA Collaboration Meeting, GSI, Germany, 5-9 September 2011

Separation Power

- The general way to quantify the separation power between particles A and B is to consider the difference in energy loss compared to standard deviation.

$$
N \sigma_{A, B}=\frac{\mid\left\langle d E / d x>_{A}-<d E / d x>_{B}\right|}{\left(\sigma_{A}+\sigma_{B}\right) / 2}
$$

Typical examples of separation power as a function of momentum

Particle detection with drift chambers, Blum W. et al. (2008) p. 366

Separation Powers Comparison
 Separation power after distance correction
 Separation power after distance correction
 Separation power after distance correction

Results show:

- TOT method shows similar separation power as the amplitude

Conclusions

- Distance correction improves resolution
- TOT method shows similar separation power as the amplitude

Following Works

- Calculation of gas gain by the new version of Magboltz 8.9
- Adding tail cancelation transfer function
- Adding noise function
- Compare the simulation with experiment

Thanks For Attention!

Position Resolution

- Position resolution
- Signals for distances from 0.002 -
0.49 cm in steps of 0.5 mm were
- Signals for distances from 0.002
0.49 cm in steps of 0.5 mm were created
- Sending them through the electronics
- The threshold crossing time was histogramed
- Fitted with a Gaussian function
- Position resolution=sigma of time distribution * drift velocity

Position resolution vs distance from wire

Energy Loss dE/dx in Straw

