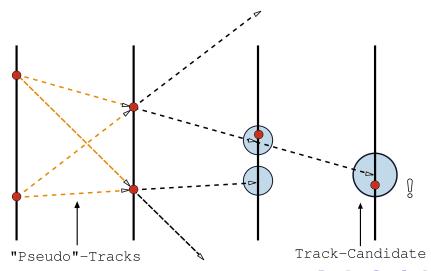
Missing plane algorithm

(Comparison Cellular Automata for track search with standart track-finder)

Anastasia Karavdina

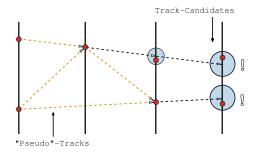
KPH, University Mainz

06/09/2011

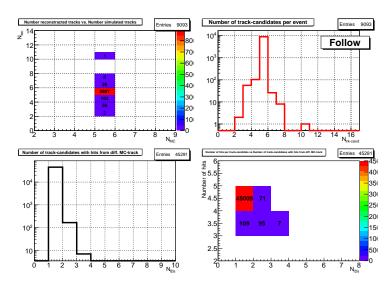

Outline

- Missing plane algorithm
 - Description & results for Track-Following
 - Description & results for Cellular Automation
 - Test with real missing sensor
- Results

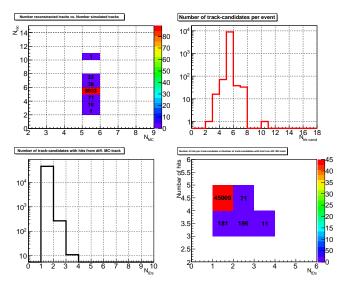
All results are presented for simulation: 5 trks/event, P_{beam} =8.9 GeV/c



Normal algorithm for Track-Following (by M. Michel)


Missing plane algorithm (by M. Michel)

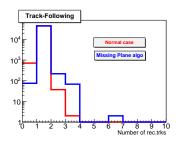
- Initial vectors are built between 1&2, 1&3, 2&3 planes
- For search started from 1&3, 2&3 only free hits are used



Tracks with missed hits can be found. Number of ghost tracks is small.

Results for normal Track-Following algorithm

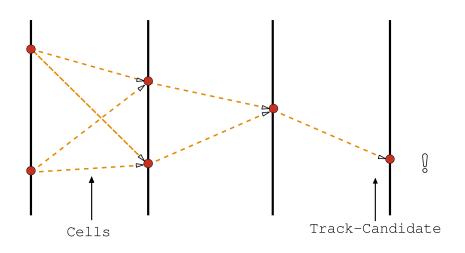
Results for missing plane algorithm for Track-Following



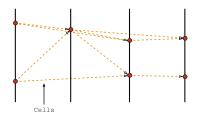
Summary (Track-Following)

- for normal case: good tracks = 45118 bad tracks = 173
- missing planes algorithm: good tracks = 45190 bad tracks = 278

Summary (Track-Following)

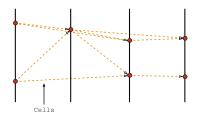

- for normal case: good tracks = 45118 bad tracks = 173
- missing planes algorithm: good tracks = 45190 bad tracks = 278

Additional tracks due to "missing planes" algorithm, %


N_{trk}^{MC}	1.5 GeV/c	8.9 GeV/c	15 GeV/c
1	0.94	0.02	0.01
2	1.1	0.14	0.11
3	1.3	0.21	0.24
5	1.6	0.39	0.43

Normal algorithm for Cellular Automata

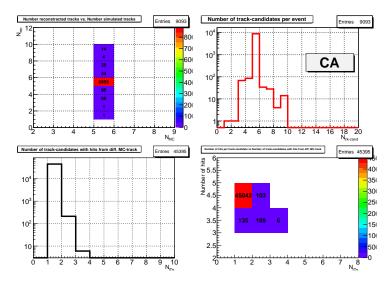
Missing plane algorithm for Cellular Automata


- Cells are built between neighboring layers and skipping over one layer
- Both kinds of cells participate in track-search simultaneously

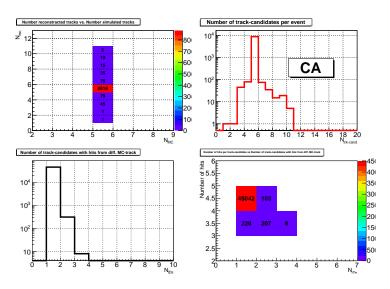
Tracks with missed hits can be found. Number of ghost tracks could be large.

Missing plane algorithm for Cellular Automata

- Cells are built between neighboring layers and skipping over one layer
- Both kinds of cells participate in track-search simultaneously


Tracks with missed hits can be found. Number of ghost tracks could be large.

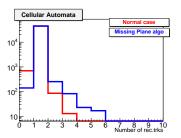
Filter for Cellular Automata


Idea

- 4 point and 3 point tracks
 - All tracks with 4 hits are saved.
 - Compare tracks with 4 hits and with 3 hits.
 - If all points from a "3 hits" track already participate in a "4 hits" track, throw the "3 hits" track away.
- 3 points tracks
 - Compare tracks with 3 hits between each other.
 - If at least 2 hits are participate in two(or more) tracks, the more straight track is chosen.

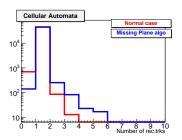
Results for normal Cellular Automata algorithm

Results for missing plane algorithm for Cellular Automata



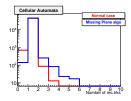
Summary (CA)

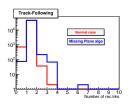
- for normal case: good tracks = 45177 bad tracks = 218
- missing planes algorithm: good tracks = 45262 bad tracks = 318

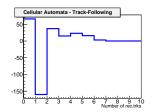

Summary (CA)

- for normal case: good tracks = 45177 bad tracks = 218
- missing planes algorithm: good tracks = 45262 bad tracks = 318

Summary (CA)

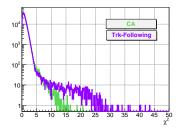

- for normal case: good tracks = 45177 bad tracks = 218
- missing planes algorithm: good tracks = 45262 bad tracks = 318

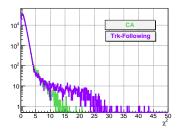


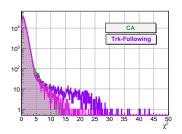

Additional tracks due to "missing planes" algorithm, %

N_{trk}^{MC}	1.5 GeV/c	8.9 GeV/c	15 GeV/c
1	0.91	0.02	0.03
2	0.9	0.18	0.16
3	1.1	0.26	0.25
5	1.4	0.41	0.46

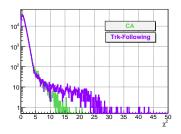
MCid participation (CA vs. Follow)

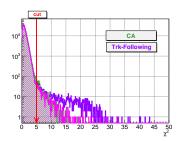


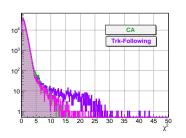

Cellular Automata, % N_{trk}^{MC} 1.5 GeV/c 8.9 GeV/c 15 GeV/c 0.91 0.02 0.03 0.9 0.18 0.16 0.26 0.25 1.1 1.4 0.41 0.46

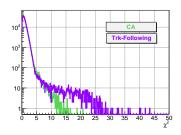

Track-Following, %						
MC	150 14	0000111	15.0.1//			
N_{trk}^{inc}	1.5 GeV/c	8.9 GeV/c	15 GeV/c			
1	0.94	0.02	0.01			
2	1.1	0.14	0.11			
3	1.3	0.21	0.24			
5	1.6	0.39	0.43			

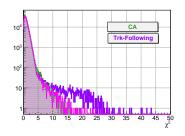
χ^2 cut?

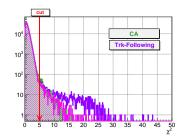



χ^2 cut?



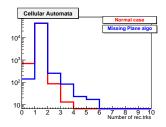

χ^2 cut?

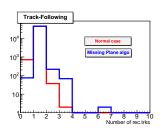


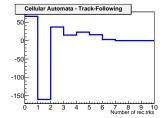


$\chi^2 \text{ cut?}$

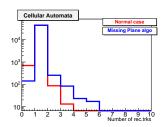
χ^2 cut:

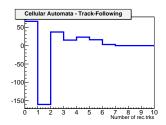

0.2 % CA

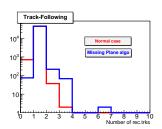

0.3 % CA(+missing planes)

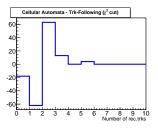

0.1 % F

0.4 % F(+missing planes)

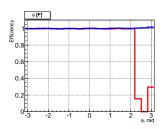

MCid participation (CA vs. Follow)

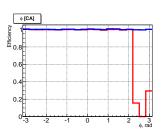


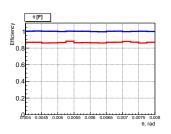


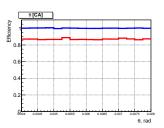


MCid participation (CA vs. Follow)









Test with real missing sensor. Efficiency

Summary

- Cellular Automata gives lower number of ghost tracks for high density of tracks (5 trk/sensor)
 (it was shown on the previous meeting)
- For low density of tracks number of ghost tracks slightly higher for Cellular Automata algorithm (χ^2 cut can help)
- Missing plane algorithms were implemented for both algorithms

Plan

Background studies with DPM and $p\bar{p}\to\pi^+\pi^-$ generator by M. Zambrana & D. Khaneft

