Available Vertex Fitters

Ralf Kliemt

HISKP, Uni Bonn

GSI Darmstadt, 05.09.2011

Vertexing Goals

- Find common origin for a set of tracks
- Update Four-Momenta
- Available: PndVtxPoca, PndVtxPRG, PndKinVtxFitter

Fig. 1. Relation between q_i and (V, p_i) in a vertex fit.

Figure: from P.Billoir, S.Qian, NIM A311 (1992)

PndVtxPoca:

- Point of closest approach of two helices (2D)
- 1/d weighted average for more than 2 tracks
- Output: Vertex position only

```
TVector3 vecC;
PndVtxPoca* vtx = new PndVtxPoca(*recocand);
Double_t num = vtx->GetPocaVtx(vecC);
```


PndVtxPRG:

- Vertex Finding/Fitting and Vertex constrained Momentum fit
- Linearized fitting algorithm with linearized helices¹
- Output: Vertex position, Momenta angle update & Cov

```
TMatrixD vtxcov(3,3); TVector3 vecC;
PndVtxPRG vtxfitter(*recocand);
Double_t chiq = vtxfitter.FitVertexFast(vecC,vtxcov,skipcov);
// Double_t chiq = vtxfitter.FitVertexFull(vecC,vtxcov,nIter);
```


¹P.Billoir, S.Qian, NIM A311 (1992)

PndKinVtxFitter:

- Vertex and Momentum fitting
- Driect fit of all tracks simultaneously²
- Output: Vertex position, Momenta update & Cov

```
PndKinVtxFitter *fit = new PndKinVtxFitter(*recocand);
fit->Fit();
fitted = fit->FittedCand(*recocand);
```

TVector3 vecC = fitted->GetPosition();

²Paul Averey track fitting papers (1991-1992).

$\sigma_v/\mu m$	Poca	PRG	VtxKin
х	47.3	57.9	44.3
у	45.6	51.6	42.9
Z	88.4	94.9	90.2

$\sigma_v/\mu m$	Poca	PRG	VtxKin
х	56.9	86.1	46.9
у	56.3	84.8	46.1
Z	113	125	93.2

Table: D^0

Table: D^+

$\sigma_v/\mu m$	Poca	PRG	VtxKin
X	47.5	58.3	44.6
у	46.3	51.9	43.5
Z	88.4	94.1	89.3

$\sigma_v/\mu m$	Poca	PRG	VtxKin
х	57.4	85.3	46.3
у	56.0	84.4	45.7
Z	110	123	94.1

Table: $\overline{D^0}$

Table: D^-

Decay lengths of D^0 and $\overline{D^0}$ ($c\tau = 122.9 \mu m$)

Decay lengths of D^+ and D^- ($c\tau = 311.8 \mu m$)

Remarks

- PndVtxPoca:
 - Tracks need to be extrapolated to get proper momenta: PndAnalysis::PropagateToPoint(TCandidate*, TVector3*)
- PndVtxPRG:
 - To do: Adding/subtracting of Tracks
 - To do: Steering automatism
 - Possible: Pointing constrained fit.
 - Possible: Progressive detection of secondary decays
- PndKinVtxFitter:
 - Not tested, just used.
- · All particles go to the disks and forward spectrometer
- Forward Tracking: Ideal with $\sigma_v = 200 \mu m$

X-Y Discrepancy in the Barrel:

Events: $2\pi^+2\pi^-1GeV/c$ from IP, $\Theta = 10^\circ - 130^\circ$ Vertexfinder: POCA

$\sigma_v/\mu m$	Poca	90° Poca
х	88.3	69.5
у	69.5	88.3

With constant field in specified angular regions (Disks & Barrel, no FWD)

$\sigma_v/\mu m$	$30^{\circ} - 40^{\circ}$	$60^{\circ} - 70^{\circ}$
X	47.2	80.2
у	45.7	67

Ideas:

Geometry - central frame? Tracking - we used STT and the PR in rev. 12727

Thanks for listening.