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Low-Energy Neutron Beam Study
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LHC/ANY other accelerator for PP
experiments produces large and
comparable fluxes of photons and
neutrons, i.e. in the ATLAS muon
spectrometer area

Neutron ionization charge deposition
@ the Monitored Drift Tubes (MDTs) can
be hundreds of times larger than the
charge deposition of a single muon!

The increased charge per unit length of
anode could cause aging to the detector
and to its electronics
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Low-Energy Neutron Beam Study

5.5 MV Tandem Van der Graff

Neutron Beams: accelerator of NCSR “Demokritos”

3 0.3- 6.3 MeV, via ‘Li(p, n)’Be
d 4.0-12.0 MeV, via d(d, n)*He
J15.0 -21.0 MeV, via t(d, n)*He

Beam Properties:

J Monochromatic source of neutrons

d Neutron fluence highly peaked in the forward direction
up to 103 kHz/cm?
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The neutron flux versus the angle of emission has been studied by a BF; neutron detector
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The materials of the Monitored Drift Tube - MDT

Aluminum walls

Ar:CO, (93:7) Gas mixture

W:Re (97:3) Anode Wire (HT: 3080V)
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Low-Energy Neutron Beam Study

» The background radiation in the experimental
area and measurements for its limitation

Neutrons coming from neutron elastic and
inelastic scatterings with the surrounding materials

Prompt photons coming from neutron inelastic
scatterings with the surrounding materials in the hall

a BF; counter, sensitive to neutrons, was used to monitor
the neutron flux
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In order to prevent scattered neutrons from reaching the
BF; detector, three conditions have been studied :

1. Neutron beam hitting directly the BF, detector
2. A paraffin collimator was placed in frond of the Gas Cell

3. Paraffin blocks were placed on the floor

A combination of the paraffin collimator and the paraffin
blocks on the floor minimizes the scattered neutrons going
to the BF3 detector
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Prompt photons
BF, counts 610537 139821
MDT counts 3557123 3103159
' Many MDT counts
are due to

Limitation of emitted neutrons to
22,90 %

Limitation of MDT counts only to
87,2 % J
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Neutron beam studies

with the reaction:

d+d —°3He +n

4.0 -12.0 MeV
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Low-Energy Neutron Beam Study

The Experimental Setup

» A deuteron beam hits a stainless steel gas cell target of
3.7 cm long, filled with deuterium gas under a few bars
pressure

» The entrance window is a 5 um Mo foil and the beam
stops on a 1 mm Pt foill

» The deuterium gas pressure can be monitored and

refilled electronically when the cell pressure falls below a
preset level
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Tritium Target
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The Neutron flux measurement and
normalisation

Method: An Fe foil irradiated in front of the
neutron beam. It's activation is measured
offline. The neutron flux is then calculated by :

__ Ne™ =
q)_(l—e_ﬂ’““)ae]j‘"lyFB N, (cm )
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Where,

N’ : counts measured offline (dead time corrected)

[, : time between the end of the irradiation and the beginning of
the offline measurement

A : decay constant of Fe

l,.; : time of the activation measurement

O : cross section of the 56Fe(n,p)56Mn reaction

eff : the efficiency of the detector for the offline measurement

Fg : correction factor due to the activation of the Fe foil during the
irradiation

l, : branching ratio of the 55Fe(n,p)>¢Mn reaction

{;.. : the irradiation time of the Fe foil

N, : initial number of nuclei in the Fe foil FB =
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The Germanium
detector during
the off-line
measurement of
the Fe foil
activation for
normalizing the
runs and
measuring the
accumulated
neutron beam

The
activated
Fe foil
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The measured neutron fluxes®, corresponding
to the MDT's solid angle, are :

Neutron Energy 6 8 10
(MeV)

Neutron Flux

() (neutrons/cm2) (0.75 £ 5.22) (2.18 £1.06) (3.42 + 1.67)

X 108

Neutron Fluence

F (neutrons/cmzs) | (0-50 £3.50) (1.45 £ 1.01) (2.29 + 1.53)

X 10%

*Preliminary results
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MDT efficiency to 6, 8 and 10 MeV neutrons

Neutron Energy 6 8 10
(MeV)

F,
(neutrons/cm2 s) | (0.50  3.50) (1.45 £1.01) (2.29 £ 1.53)

x104

= - 97.09£0.35 | 224.88+0.06 | 261.18 +0.09
(neutrons/cm?s)
g = Rypr/F. (1.94%1.36) | (1.54 £1.07) (1.14 £ 0.76)

x10-2
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> Use of the GEANT-4 simulation toolkit

» Good description of the geometry

» Good description of neutron physics
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Low-Energy Neutron Beam Study

The geometry used for the simulation model and the
neutron beam hitting the MDTs
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The experimental and the simulated results for the MDT
efficiency response to 0.518 — 10 MeV neutrons
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The ratio of the simulated over the experimental MDT
detection efficiency response to 0.5 - 10 MeV neutrons
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Conclusions

» We have studied the response of an array of the ATLAS muon
detectors exposed to neutron beams of energies (0.52 — 10.00) MeV:

v" Monitored Drift Tubes (MDT)

v' Cathode Strip Chambers (CSC)

v" Thin Gap Chambers (TGC) (ATLAS-upgrade)
v" Micro-Megas (ATLAS-upgrade)

» We have developed a simulation model of the experiment, using the
Geant4 toolkit

New simulations under preparation with MCNP, etc.
1.Study of a micro-megas chamber in a neutron beam, 2010 JINST 5 (2005)

2.Determination of the ATLAS MDT chambers response to 0.5-10 MeV neutrons
and development of a simulation model, NIM AS75, 402 (2007)
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Conclusions

» We are participating to the ATLAS Cavern background
studies with experimental and simulation results, under
the Super-LHC beams energy and luminosity conditions

» The Athens neutron beam facility and developed
methodology can be provided for ANY particle detector
QA_QC test or any other high-tech material tests
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" ... 'Qv EOTIV YAP NMIV TOICI TE TWV QUOCIWV TOIOT TE TWV TEXVEWV
OPYAVOIG ETTIKPATEEIV, TOUTEWV EOTIV nMiv OnUIoupyoig eivai,
AAAWYV O£ OUK €OTIV. "

ITrrokparng 460-370 . X.

“... there, we can prevail with the help of the physical or the
scientific instruments; there we, only, have the possibility to
become creators. *

Hippocrates 460-370 BC

Hippocrates was born around 460 BC on the island of Kos, Greece.
He became known as the founder of medicine and was regarded as
the greatest physician of his time.

He based his medical practice on observations and on the study of
the human body.

He rejected the views of his time that considered illness to be caused
by superstitions and by possession of evil spirits and disfavor of the
gods.
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