Isomer states in neutron-rich 73,75,77Ni

Goal: search for 1/2⁻ isomeric states in neutronrich odd Ni nuclei next to ⁷⁸Ni in order to get an estimation on the 2⁺ energy of ⁷⁸Ni.

Physics motivations

From shell model analysis of N=50 nuclei, the N=50 shell gap at Z=28 is estimated to be reduced by 2-3 MeV relative to ¹⁰⁰Sn

~3.5-4.5 MeV

Long-lived isomers in odd Ni isotopes

Long-lived isomers in odd Ni isotopes

~20 ms Low-lying long-lived 1/2⁻ isomeric states are expected in odd Ni nuclei. 2228 $1/2^{-}$ E_=50-700 keV T_{1/2}=1ms-10ns 5/21100 $1/2^{-}$ -20 ms 1000 5/2**6**02 $5/2^+$ $1/2^{-}$ 574 400 712 $7/2^{+}$ 253 $7/2^{+}$ 2419/2⁺ $9/2^{-1}$ 9/2 $9/2^{+}$ 7173 75 77 Estimated half lives of the $vp_{1/2}$ states in odd Ni nuclei as

predicted by the shell model

Energy of $d_{5/2}$ state is reduced by:

 $p_{1/2}$

15/2

.p_{3/2}

f_{7/2}

> strength of pairing interaction in $vg_{9/2}$ hole state

additional bindig from quadrupole correlations

Long-lived isomers in odd Ni isotopes

If the 1/2⁻ isomeric state in ⁷⁷Ni decays by 1 gamma line the lowest 5/2⁺ state is above the 1/2⁻ state and the strength of the N=50 shell gap stays strong at Z=28

If the 1/2⁻ isomeric state in ⁷⁷Ni decays by 2 gamma lines the lowest 5/2⁺ state intrudes below the 1/2⁻ state and the N=50 shell gap weakens at Z=28

Energy and life time of the $1/2^{-1}$ state in lighter 73,75 Ni isotopes is needed to reveal the structure of these nuclei from γ -spectroscopy.

Experimental setup

Primary beam: ²³⁸U with 345 MeV/nucleon, 2 pnA Primary target: 1.2 g/cm² ⁹Be

Expected secondary beam intensities: 200 ion/h ⁷⁷Ni 5000 ion/h ⁷⁵Ni 10⁵ ion/h ⁷³Ni

We obtained the rates by LISE++ scaled down to experimental production rates reported by Ohnishi et al. (JPSJ 79 (2010) 078201).