Search for long-lived isomeric activities " below" $$^{132}\rm{Sn}$$

S. Lalkovski

EURICA Workshop, 12 September 2011

4 E b

Motivation

Odd-A silver isotopes

Odd-A palladium nuclei

Odd-A ruthenium nuclei

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Motivation

Odd-A silver isotopes Odd-A palladium nuclei Odd-A ruthenium nuclei Conclusions

r-process overabundance in $A \approx 120$ region

K.-L.Kratz, et al., Hyp.Int.129 (2000) 185

Nuclear physics input:

- nuclear masses: Q_{β} , S_n
- β -decay half lives: $T_{1/2}$
- neutron emission probabilities: P_n
- neutron capture cross-sections: σ_{n,γ}
- ground state J^{π}

Observed overabundance in the $A \approx 120$ region.

Structural evolution towards N-rich nuclei

< ロト < 同ト < ヨト < ヨト

- Shell-quenching
- Shape co-existence
- Long β-decaying half-lives

Motivation

Odd-A silver isotopes Odd-A palladium nuclei Odd-A ruthenium nuclei Conclusions

Cegré chart

	124Sn STABLE	1258n 9.64 D	126Sn 2.30E+5 Y	127Sn 2.10 H	1288n 59.07 M	129Sn 2.23 M	130Sn 3.72 M	131Sn 56.0 S	132Sn 39.7 S
Z	5.15%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
	123In 6.17 S	124In 3.12 S	125In 2.36 S	126In 1.53 S	127In 1.09 S	128In 0.84 S	129In 0.61 S	130In 0.29 S	131In 0.28 S
49	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n≤ 0.03%	β-: 100.00% β-n < 0.05%	β-: 100.00% β-n: 0.25%	β-: 100.00% β-n: 0.93%	β-: 100.00% β-n≤ 2.00%
	122Cd 5.24 S	123Cd 2.10 S	124Cd 1.25 S	125Cd 0.65 S	126Cd 0.515 S	127Cd 0.37 S	128Cd 0.28 S	129Cd 0.27 S	130Cd 162 MS
48	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-	β-: 100.00% β-n: 3.50%
	121Ag 0.79 S	122Ag 0.529 S	123Ag 0.300 S	124Ag 0.172 S	125Ag 166 MS	126Ag 107 MS	127Ag 79 MS	128Ag 58 MS	129Ag 46 MS
47	β-: 100.00% β-n: 0.08%	β-: 99.80% β-n: 0.19%	β-: 100.00% β-n: 0.55%	β-: 100.00% β-n: 1.30%	β-: 100.00% β-n	β-: 100.00% β-n	β-: 100.00%	β-: 100.00% β-n	β-: 100.00% β-n
	120Pd 0.5 S	121Pd >150 NS	122Pd 175 MS	123Pd >150 NS	124Pd 38 MS				
46	β-: 100.00%	β-	β-≥ 97.50% β-n≤ 2.50%	β-	β-: 100.00%				
	74	75	76	77	78	79	80	81	N

・ロン ・四と ・ヨン ・ヨン

æ

Motivation

Odd-A silver isotopes Odd-A palladium nuclei Odd-A ruthenium nuclei Conclusions

Search for shell-quenching effects

Systematics of the odd-A Ag nuclei

Low-lying isomeric states at the *N*-rich odd-A Ag nuclei

Shell model calculat

EShM EShM 21/2+ 3521 NuSHELL 21/2+ 3349 15/2 3284 11/2 2954 15/2+ 2529 NuSHELL NuSHELL 17/2 13/2 13/2 15/2+ ____ 2319 EShM 9/2 2206 15/2+ ____ 212415/2- ____ 2148 21/2+ 2018 11/2 1977 11/2+ _____ 1907 17/2+ ____ 1794 15/2+ ____ 174**7**3/2+ ____ 1759 5/2- ____ 1678 17/2⁻ 7/2⁻ 1424_{13/2}-1381 5/2+ ---- 1542 11/2+---- $\frac{3/2^+}{11/2^+} = \frac{1421}{1337}$ 13/2+ _____ 1365 3/2 1383 13/2+ ---- 1268 ۱₃₁₂ 13/2+ 1226 5/2⁺ 17/2⁺ 1069^{7/2⁺} 1051 9/2-7/2-77 1146 11/2+ _____ 1097 11/2+ _____ 1035 13/2+ ____ 933 13/2+ _____ 851 3/2 1 / 720 7/2+ --- 783 5/2-780 7/2+ _____ 734 32^+_{522} $\overline{}$ $\overline{}$ 562^+_{561} $52^+_{7/2}$ $\overline{}$ 594^-_{90} $3/2^-_{592}$ 592^-_{592} 17/2+/ 684 5/2⁺ ---- 492 5/2⁻ ----- 494 420 9/2+ _____ 271 9/2+ _____ 243 1/2-291 9/2+ - 207 7/2+---0 7/2+ ____ 0 9/2+ ____ 0 1/2 17 9/2+ ____ 0 9/2+ ____ 0 1/2-0 125 127 129 Search for long-lived isomeric activities "below" ¹³²Sn S. Lalkovski

N = 3 and N = 4 oscillator shells

- ∢ ≣ ▶

Neutron-rich odd-A palladium isotopes

25 ns 11/2⁻⁻⁻⁻⁻⁻ 785

36.1 us 1/2⁺ ----- 499_{11/2}⁻----- 489

Shell model calculations

2.8 ns

11/2- 1070

9/2+ ---- 720

1.04 ns 1/2⁺ — 618

Aim:

 To allocate the long lived isomers in the extremely N-rich odd-A Ag, Pd, Rh and Ru nuclei

Collaboration

Prof. Phil Walker Dr. Zsolt Podolyak Dr. Filip Kondev

. . .

イロン イヨン イヨン

3