Search for tetrahedral shape around ¹¹⁰Zr and possible shell closure at N=70 Toshiyuki Sumikama Tokyo University of Science

CONTENTS

- Introduction: Structural evolution of Zr isotopes
- * Decay spectroscopy for ^{106,108}Zr performed at RIBF
- * Decay Spectroscopy around ¹⁰⁸Zr with EURICA
- * Summary

SYMMETRY OF TETRAHEDRAL SHAPE

- Tetrahedral deformation
 Y₃₂
 breaks spherical symmetry
 and symmetry by inversion
- Degeneracies are 2 and 4Large gap

J. Dudek et al., PRL 88, 252502 ('02). N. Schunck et al., PRC 69, 061305(R) ('04).

LARGE DEFORMED REGION

Sudden onset of large deformation at N=60

- * Deformation evolution (β_2) N=70 is magic number?
- ***** Evolution of γ degree of freedom in Zr isotopes

Decay Spectroscopy for ¹⁰⁸Zr performed at RIBF

T. Sumikama et al., Phys. Rev. Lett. 106, 202501 (2011)

COLLABORATORS

- Tokyo University of Science *
- **RIKEN** Nishina Center *
- Osaka University *
- Tokyo Institute of Technology *
- CNS *
- Japan Atomic Energy Agency *
- Kyushu University *
- * Technishe Universität München C. Hinke, K. Steiger,
- TRIUMF *
- NSCL *
- * **INFN**
- *
- University of Surrey *
- University of York *

- T. Sumikama, K. Yoshinaga, Y. Miyashita, T. Nakano, K. Sugimoto, S. Takano, J. Chiba
 - S. Nishimura, H. Watanabe, Z. Li, G. Lorusso, H. Sakurai, H. Baba, M. Nishimura, T. Isobe, H. Scheit, P. Doornenbal, D. Steppenbeck
 - K. Yamaguchi, A. Odahara, A. Takashima, Y. Ito, K. Tajiri, H.J. Ong
 - N. Kobayashi, Y. Kawada, Y. Kondo, E. Ideguchi, S. Go, S. Ota, S. Kubono, H. Yamaguchi,
 - T. Hashimoto, S. Hayakawa
- Y. Wakabayashi
 - T. Teranishi
- R. Kruecken
 - J.S. Berryman
- O. Wieland, N. Blasi
- Università di Milano, INFN A. Bracco, F. Camera
 - Zs. Podolyák, P.M. Walker
 - D.G. Jenkins

GAMMA-RAY FROM ¹⁰⁶ZR

- * β-delayed γ-ray from 106 Zr (β decay of 106 Y)
- Spin assignment Most intense peak 152 keV $2_1^+ \rightarrow 0_1^+$

* Other peaks $324 \text{ keV: } 4_1^+ \longrightarrow 2_1^+$ $607 \text{ keV: } 2_2^+ \longrightarrow 0_1^+$

* Prediction (IBM) $E(4_1^+) = 455 \text{ keV}$ $E(2_2^+) = 618 \text{ keV}$ S. Lalkovski and P. Vanlsacker, PRC 79, 044307 (2009).

Possible Structure of Isomeric state in ¹⁰⁸Zr
★ Long-lived isomer in even-even nucleus (620±150 ns)
★ Energy > 1 MeV
★ Spin > 4
Isomer was observed

1. Tetrahedral shape isomer

No isomer was observed

Possible Structure of Isomeric state in ¹⁰⁸Zr Long-lived isomer in even-even nucleus $(620\pm150 \text{ ns})$

1. Tetrahedral shape isomer **Tetrahedral & Spherical shapes**

 β_{32} deformation

Energy barrier

Total E; HFB with SIII force

Olbratowski et al., Int. Mod. Phys E15, 333 ('06).

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Elongation β_2

0.2

0.3

0.4

0.5

Isomer was observed

No isomer was observed

Possible Structure of Isomeric state in ¹⁰⁸Zr
★ Long-lived isomer in even-even
nucleus (620±150 ns)

Tetrahedral shape isomer
 Tetrahedral & quadrupole deformed shapes

N. Schunck et al., PRC 69, 061305(R) ('04).

Decay Spectroscopy around ¹⁰⁸Zr with EURICA

Decay Spectroscopy of ¹⁰⁸Zr Search for new isomers in ¹¹⁰Zr, ^{110,112}Mo Ground state band of ¹¹⁰Zr 2nd 2⁺ state evolution in Zr isotopes Decay Spectroscopy of ¹⁰⁸Zr * Spectroscopy of ¹⁰⁸Zr isomer with high statistics Search for missing γ-ray peaks γ-γ coincidence

Level scheme
 Common peaks correspond to low-lying states.

 ^{(4+) 521.6}
 ^{(4+) 52}

- **Structure from** E and $t_{1/2}$
 - Tetrahedral shape?
 - High-K isomer?
 - * Other isomer?

Isomer Search In Even-even Nuclei ₩ N=68: ¹¹⁰Mo with high statistics ₩ N=70: ¹¹⁰Zr and ¹¹²Mo

- 1. Tetrahedral shape isomer in ¹⁰⁸Zr
 a. Tetrahedral shape isomer in ¹¹⁰Zr
 b. Ground state of ¹¹⁰Zr is predicted to be tetrahedral shape.
 N. Schunk et al., PRC 69, 061305(R) (2004).
 Prolate shape may become an isomer??
- X 2. Isomer of ¹⁰⁸Zr is the high K isomer
 Two quasineutron states around ¹⁰⁸Zr
 F. R. Xu et al., PRC 65, 021303(R) (2002).

Ground-State Structure of ¹¹⁰Zr

- **Reduction of spin-orbit interaction?**
- ***** Test of predicted transition to spherical shape at $\mathcal{N}=70$
- Low-lying states
 - ✤ Isomer in ¹¹⁰Zr
 - * No chance for beta decay with 5 pnA

EVOLUTION OF 2ND 2+ STATE IN ZR ISOTOPES

Counts

✤ ¹⁰⁶Zr case

★ 607 keV: $2_2^+ \rightarrow 0_1^+$

* Prediction (IBM) $E(4_1^+) = 455 \text{ keV}$ $E(2_2^+) = 618 \text{ keV}$ S. Lalkovski and P. Vanlsacker,

152 105Y 25 β decay of ¹⁰⁶Y (a) 20 105γ 15 324 507 10 5 0 100 200 300 400 500 600 Energy (keV)

E (keV)

 \mathcal{N}

Thank you for your attention

Beam Time Estimation

USE OF HIGH INTENSITY BEAM

- High intensity beam
 - from ~ 0.3 pnA to 5 pnA (avg. 3 pnA)
- ✤ Keep Total Yield to ~ 100 cps

Separation @ BigRIPS

DECAY SPECTROSCOPY WITH EURICA

- ***** Improvement of γ -ray counts from previous exp.
 - * γ -ray efficiency: 4 clovers to EURICA
 - x 7
 - High intensity beam
 from ~ 0.3 pnA to 5 pnA (avg. 3 pnA)
 x 10
 - Beam time (8 days)
 - x 4
 - * Total x 280 X 280

BEAM TIME ESTIMATION

- β-γ & Isomer spectroscopy around ¹¹⁰Zr (N=67 72)
 8 days
- Beam tuning/Circuit & Detector check
 2 days
- Total10 days